Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964372277> ?p ?o ?g. }
- W2964372277 endingPage "655" @default.
- W2964372277 startingPage "651" @default.
- W2964372277 abstract "Pan-sharpening aims to fuse a low-spatial-resolution multispectral (MS) image with an associated higher resolution panchromatic image (PAN) in order to produce a high-resolution MS (HRMS) image to overcome physical limitation of satellite sensors. In this letter, we propose a new generalized Laplacian pyramid gain injection prediction based on convolutional neural networks (GIP-CNN) for pan-sharpening, which estimates the values of the injection gains for each MS band to complement it with spatial details extracted from the PAN image. The experimental results on images from different satellites show that GIP-CNN can achieve higher performances with respect to the state-of-the-art and new CNN-based methods in both spatial and spectral qualities." @default.
- W2964372277 created "2019-08-13" @default.
- W2964372277 creator A5024776460 @default.
- W2964372277 creator A5065284035 @default.
- W2964372277 creator A5072142668 @default.
- W2964372277 creator A5086553271 @default.
- W2964372277 date "2020-04-01" @default.
- W2964372277 modified "2023-09-26" @default.
- W2964372277 title "Generalized Laplacian Pyramid Pan-Sharpening Gain Injection Prediction Based on CNN" @default.
- W2964372277 cites W1885185971 @default.
- W2964372277 cites W1934334601 @default.
- W2964372277 cites W1970836680 @default.
- W2964372277 cites W1974745581 @default.
- W2964372277 cites W2053295068 @default.
- W2964372277 cites W2072451313 @default.
- W2964372277 cites W2074788894 @default.
- W2964372277 cites W2088538848 @default.
- W2964372277 cites W2097259623 @default.
- W2964372277 cites W2100895099 @default.
- W2964372277 cites W2112796928 @default.
- W2964372277 cites W2114161542 @default.
- W2964372277 cites W2152254169 @default.
- W2964372277 cites W2171211028 @default.
- W2964372277 cites W2396384022 @default.
- W2964372277 cites W2462592242 @default.
- W2964372277 cites W2619662254 @default.
- W2964372277 cites W2767224066 @default.
- W2964372277 cites W2963442801 @default.
- W2964372277 cites W4231697575 @default.
- W2964372277 doi "https://doi.org/10.1109/lgrs.2019.2928181" @default.
- W2964372277 hasPublicationYear "2020" @default.
- W2964372277 type Work @default.
- W2964372277 sameAs 2964372277 @default.
- W2964372277 citedByCount "12" @default.
- W2964372277 countsByYear W29643722772020 @default.
- W2964372277 countsByYear W29643722772021 @default.
- W2964372277 countsByYear W29643722772022 @default.
- W2964372277 countsByYear W29643722772023 @default.
- W2964372277 crossrefType "journal-article" @default.
- W2964372277 hasAuthorship W2964372277A5024776460 @default.
- W2964372277 hasAuthorship W2964372277A5065284035 @default.
- W2964372277 hasAuthorship W2964372277A5072142668 @default.
- W2964372277 hasAuthorship W2964372277A5086553271 @default.
- W2964372277 hasConcept C107445234 @default.
- W2964372277 hasConcept C121332964 @default.
- W2964372277 hasConcept C134306372 @default.
- W2964372277 hasConcept C141353440 @default.
- W2964372277 hasConcept C142575187 @default.
- W2964372277 hasConcept C153180895 @default.
- W2964372277 hasConcept C154945302 @default.
- W2964372277 hasConcept C165700671 @default.
- W2964372277 hasConcept C173163844 @default.
- W2964372277 hasConcept C196216189 @default.
- W2964372277 hasConcept C20479862 @default.
- W2964372277 hasConcept C205372480 @default.
- W2964372277 hasConcept C2524010 @default.
- W2964372277 hasConcept C2781137444 @default.
- W2964372277 hasConcept C31972630 @default.
- W2964372277 hasConcept C33923547 @default.
- W2964372277 hasConcept C41008148 @default.
- W2964372277 hasConcept C47432892 @default.
- W2964372277 hasConcept C62520636 @default.
- W2964372277 hasConcept C81363708 @default.
- W2964372277 hasConceptScore W2964372277C107445234 @default.
- W2964372277 hasConceptScore W2964372277C121332964 @default.
- W2964372277 hasConceptScore W2964372277C134306372 @default.
- W2964372277 hasConceptScore W2964372277C141353440 @default.
- W2964372277 hasConceptScore W2964372277C142575187 @default.
- W2964372277 hasConceptScore W2964372277C153180895 @default.
- W2964372277 hasConceptScore W2964372277C154945302 @default.
- W2964372277 hasConceptScore W2964372277C165700671 @default.
- W2964372277 hasConceptScore W2964372277C173163844 @default.
- W2964372277 hasConceptScore W2964372277C196216189 @default.
- W2964372277 hasConceptScore W2964372277C20479862 @default.
- W2964372277 hasConceptScore W2964372277C205372480 @default.
- W2964372277 hasConceptScore W2964372277C2524010 @default.
- W2964372277 hasConceptScore W2964372277C2781137444 @default.
- W2964372277 hasConceptScore W2964372277C31972630 @default.
- W2964372277 hasConceptScore W2964372277C33923547 @default.
- W2964372277 hasConceptScore W2964372277C41008148 @default.
- W2964372277 hasConceptScore W2964372277C47432892 @default.
- W2964372277 hasConceptScore W2964372277C62520636 @default.
- W2964372277 hasConceptScore W2964372277C81363708 @default.
- W2964372277 hasIssue "4" @default.
- W2964372277 hasLocation W29643722771 @default.
- W2964372277 hasOpenAccess W2964372277 @default.
- W2964372277 hasPrimaryLocation W29643722771 @default.
- W2964372277 hasRelatedWork W1988829224 @default.
- W2964372277 hasRelatedWork W2052541459 @default.
- W2964372277 hasRelatedWork W2063918038 @default.
- W2964372277 hasRelatedWork W2158398018 @default.
- W2964372277 hasRelatedWork W2243647731 @default.
- W2964372277 hasRelatedWork W2585003870 @default.
- W2964372277 hasRelatedWork W2737704976 @default.
- W2964372277 hasRelatedWork W2771164060 @default.
- W2964372277 hasRelatedWork W3081713466 @default.
- W2964372277 hasRelatedWork W4313315820 @default.
- W2964372277 hasVolume "17" @default.