Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964490265> ?p ?o ?g. }
- W2964490265 endingPage "594" @default.
- W2964490265 startingPage "579" @default.
- W2964490265 abstract "In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly. Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover, we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients on edges, which reduces the memory footprint by about 50 percent. Our approach is trivially parallelizable, with a low memory footprint that grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128 GB RAM, outperforming the original heat method and other state-of-the-art geodesic distance solvers." @default.
- W2964490265 created "2019-08-13" @default.
- W2964490265 creator A5019878788 @default.
- W2964490265 creator A5045828619 @default.
- W2964490265 creator A5068930707 @default.
- W2964490265 creator A5073998375 @default.
- W2964490265 creator A5077864765 @default.
- W2964490265 creator A5088798709 @default.
- W2964490265 date "2021-02-01" @default.
- W2964490265 modified "2023-10-12" @default.
- W2964490265 title "Parallel and Scalable Heat Methods for Geodesic Distance Computation" @default.
- W2964490265 cites W1934582279 @default.
- W2964490265 cites W1978333359 @default.
- W2964490265 cites W1999484884 @default.
- W2964490265 cites W1999690352 @default.
- W2964490265 cites W2019527978 @default.
- W2964490265 cites W2021587133 @default.
- W2964490265 cites W2026778346 @default.
- W2964490265 cites W2054113582 @default.
- W2964490265 cites W2054935921 @default.
- W2964490265 cites W2066789692 @default.
- W2964490265 cites W2067689904 @default.
- W2964490265 cites W2074537686 @default.
- W2964490265 cites W2076261573 @default.
- W2964490265 cites W2083836923 @default.
- W2964490265 cites W2084631168 @default.
- W2964490265 cites W2087353192 @default.
- W2964490265 cites W2099068061 @default.
- W2964490265 cites W2108567935 @default.
- W2964490265 cites W2111693792 @default.
- W2964490265 cites W2111956571 @default.
- W2964490265 cites W2128356031 @default.
- W2964490265 cites W2134921160 @default.
- W2964490265 cites W2138524633 @default.
- W2964490265 cites W2141409037 @default.
- W2964490265 cites W2161253909 @default.
- W2964490265 cites W2163787581 @default.
- W2964490265 cites W2166164984 @default.
- W2964490265 cites W2338287119 @default.
- W2964490265 cites W2472661502 @default.
- W2964490265 cites W2585592883 @default.
- W2964490265 cites W2602047337 @default.
- W2964490265 cites W2738259880 @default.
- W2964490265 cites W2765816034 @default.
- W2964490265 cites W2803251980 @default.
- W2964490265 cites W2958669303 @default.
- W2964490265 cites W2963000588 @default.
- W2964490265 cites W2964087796 @default.
- W2964490265 cites W2996868574 @default.
- W2964490265 cites W3099831354 @default.
- W2964490265 cites W3125178117 @default.
- W2964490265 cites W4238000648 @default.
- W2964490265 cites W4292363360 @default.
- W2964490265 doi "https://doi.org/10.1109/tpami.2019.2933209" @default.
- W2964490265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31398106" @default.
- W2964490265 hasPublicationYear "2021" @default.
- W2964490265 type Work @default.
- W2964490265 sameAs 2964490265 @default.
- W2964490265 citedByCount "15" @default.
- W2964490265 countsByYear W29644902652020 @default.
- W2964490265 countsByYear W29644902652021 @default.
- W2964490265 countsByYear W29644902652022 @default.
- W2964490265 countsByYear W29644902652023 @default.
- W2964490265 crossrefType "journal-article" @default.
- W2964490265 hasAuthorship W2964490265A5019878788 @default.
- W2964490265 hasAuthorship W2964490265A5045828619 @default.
- W2964490265 hasAuthorship W2964490265A5068930707 @default.
- W2964490265 hasAuthorship W2964490265A5073998375 @default.
- W2964490265 hasAuthorship W2964490265A5077864765 @default.
- W2964490265 hasAuthorship W2964490265A5088798709 @default.
- W2964490265 hasBestOaLocation W29644902652 @default.
- W2964490265 hasConcept C111919701 @default.
- W2964490265 hasConcept C11413529 @default.
- W2964490265 hasConcept C114614502 @default.
- W2964490265 hasConcept C121684516 @default.
- W2964490265 hasConcept C126255220 @default.
- W2964490265 hasConcept C148047603 @default.
- W2964490265 hasConcept C165818556 @default.
- W2964490265 hasConcept C173608175 @default.
- W2964490265 hasConcept C184720557 @default.
- W2964490265 hasConcept C199360897 @default.
- W2964490265 hasConcept C2524010 @default.
- W2964490265 hasConcept C2778770139 @default.
- W2964490265 hasConcept C31487907 @default.
- W2964490265 hasConcept C33923547 @default.
- W2964490265 hasConcept C41008148 @default.
- W2964490265 hasConcept C45374587 @default.
- W2964490265 hasConcept C459310 @default.
- W2964490265 hasConcept C48044578 @default.
- W2964490265 hasConcept C74912251 @default.
- W2964490265 hasConcept C77088390 @default.
- W2964490265 hasConceptScore W2964490265C111919701 @default.
- W2964490265 hasConceptScore W2964490265C11413529 @default.
- W2964490265 hasConceptScore W2964490265C114614502 @default.
- W2964490265 hasConceptScore W2964490265C121684516 @default.
- W2964490265 hasConceptScore W2964490265C126255220 @default.
- W2964490265 hasConceptScore W2964490265C148047603 @default.
- W2964490265 hasConceptScore W2964490265C165818556 @default.