Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964495890> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2964495890 abstract "This thesis proposes a theoretical framework to thoroughly analyse the structure of a dataset in terms of a) metric, b) density and c) feature associations. To look into the first aspect, Fisher's metric learning algorithms are the foundations of a novel manifold based on the information and complexity of a classification model. When looking at the density aspect, the Probabilistic Quantum clustering, a Bayesian version of the original Quantum Clustering is proposed. The clustering results will depend on local density variations, which is a desired feature when dealing with heteroscedastic data. To address the third aspect, the constraint-based PC-algorithm is the starting point of many structure learning algorithms, it is focused on finding feature associations by means of conditional independent tests. This is then used to select Bayesian networks, based on a regularized likelihood score. These three topics of data structure analysis were fully tested with synthetic data examples and real cases, which allowed us to unravel and discuss the advantages and limitations of these algorithms. One of the biggest challenges encountered was related to the application of these methods to a Big Data dataset that was analysed within the framework of a collaboration with a large UK retailer, where the interest was in the identification of the data structure underlying customer shopping baskets." @default.
- W2964495890 created "2019-08-13" @default.
- W2964495890 creator A5075678339 @default.
- W2964495890 date "2019-06-11" @default.
- W2964495890 modified "2023-09-27" @default.
- W2964495890 title "Identification of data structure with machine learning : from Fisher to Bayesian networks" @default.
- W2964495890 doi "https://doi.org/10.24377/ljmu.t.00010869" @default.
- W2964495890 hasPublicationYear "2019" @default.
- W2964495890 type Work @default.
- W2964495890 sameAs 2964495890 @default.
- W2964495890 citedByCount "0" @default.
- W2964495890 crossrefType "dissertation" @default.
- W2964495890 hasAuthorship W2964495890A5075678339 @default.
- W2964495890 hasConcept C107673813 @default.
- W2964495890 hasConcept C116834253 @default.
- W2964495890 hasConcept C119857082 @default.
- W2964495890 hasConcept C124101348 @default.
- W2964495890 hasConcept C138885662 @default.
- W2964495890 hasConcept C154945302 @default.
- W2964495890 hasConcept C162324750 @default.
- W2964495890 hasConcept C176217482 @default.
- W2964495890 hasConcept C21547014 @default.
- W2964495890 hasConcept C2524010 @default.
- W2964495890 hasConcept C2776036281 @default.
- W2964495890 hasConcept C2776401178 @default.
- W2964495890 hasConcept C33923547 @default.
- W2964495890 hasConcept C41008148 @default.
- W2964495890 hasConcept C41895202 @default.
- W2964495890 hasConcept C59822182 @default.
- W2964495890 hasConcept C73555534 @default.
- W2964495890 hasConcept C86803240 @default.
- W2964495890 hasConceptScore W2964495890C107673813 @default.
- W2964495890 hasConceptScore W2964495890C116834253 @default.
- W2964495890 hasConceptScore W2964495890C119857082 @default.
- W2964495890 hasConceptScore W2964495890C124101348 @default.
- W2964495890 hasConceptScore W2964495890C138885662 @default.
- W2964495890 hasConceptScore W2964495890C154945302 @default.
- W2964495890 hasConceptScore W2964495890C162324750 @default.
- W2964495890 hasConceptScore W2964495890C176217482 @default.
- W2964495890 hasConceptScore W2964495890C21547014 @default.
- W2964495890 hasConceptScore W2964495890C2524010 @default.
- W2964495890 hasConceptScore W2964495890C2776036281 @default.
- W2964495890 hasConceptScore W2964495890C2776401178 @default.
- W2964495890 hasConceptScore W2964495890C33923547 @default.
- W2964495890 hasConceptScore W2964495890C41008148 @default.
- W2964495890 hasConceptScore W2964495890C41895202 @default.
- W2964495890 hasConceptScore W2964495890C59822182 @default.
- W2964495890 hasConceptScore W2964495890C73555534 @default.
- W2964495890 hasConceptScore W2964495890C86803240 @default.
- W2964495890 hasLocation W29644958901 @default.
- W2964495890 hasOpenAccess W2964495890 @default.
- W2964495890 hasPrimaryLocation W29644958901 @default.
- W2964495890 hasRelatedWork W1600755436 @default.
- W2964495890 hasRelatedWork W194341024 @default.
- W2964495890 hasRelatedWork W2247380138 @default.
- W2964495890 hasRelatedWork W2248552121 @default.
- W2964495890 hasRelatedWork W2264297709 @default.
- W2964495890 hasRelatedWork W2275207081 @default.
- W2964495890 hasRelatedWork W2586777683 @default.
- W2964495890 hasRelatedWork W2797688306 @default.
- W2964495890 hasRelatedWork W2806727707 @default.
- W2964495890 hasRelatedWork W2925837647 @default.
- W2964495890 hasRelatedWork W2963290226 @default.
- W2964495890 hasRelatedWork W2980982918 @default.
- W2964495890 hasRelatedWork W3023570597 @default.
- W2964495890 hasRelatedWork W3104077659 @default.
- W2964495890 hasRelatedWork W3109696564 @default.
- W2964495890 hasRelatedWork W3155989061 @default.
- W2964495890 hasRelatedWork W3156209773 @default.
- W2964495890 hasRelatedWork W3169179298 @default.
- W2964495890 hasRelatedWork W3200863653 @default.
- W2964495890 hasRelatedWork W1944151692 @default.
- W2964495890 isParatext "false" @default.
- W2964495890 isRetracted "false" @default.
- W2964495890 magId "2964495890" @default.
- W2964495890 workType "dissertation" @default.