Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964590187> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2964590187 endingPage "100850" @default.
- W2964590187 startingPage "100850" @default.
- W2964590187 abstract "Abstract Working towards a more data-informed land use, amenities and infrastructure planning process, the Singapore Urban Redevelopment Authority (URA) harnesses big data and spatial analytics to deepen its understanding of urban activity and mobility patterns. Big travel demand datasets from public transport and ride-hailing services enable planners to observe mobility patterns at a high level of detail for large numbers of users, trips, and trip types. Since August 2018, the URA has been working with leading technology company and ride-hailing operator Grab to understand how daily commute patterns vary between existing and new transport modes, and how the volume of activities in each area evolves across different times of day. This paper describes the novel dataset and analytical techniques utilised to study the relationship between urban activity and mobility. It will also report how spatiotemporal characteristics of the urban environment, such as land use mix, location accessibility, and peak-hour travel demand, influence commutes by different modes in each area. By studying mobility over a range of travel modes, this method of analysis will provide city planners with richer insights to better assess infrastructure requirements for new developments. The findings are also useful for emerging transport providers, who can improve service delivery across short- and medium-term time scales." @default.
- W2964590187 created "2019-08-13" @default.
- W2964590187 creator A5021031547 @default.
- W2964590187 creator A5025971736 @default.
- W2964590187 creator A5033238983 @default.
- W2964590187 creator A5058635344 @default.
- W2964590187 creator A5061056812 @default.
- W2964590187 creator A5078528325 @default.
- W2964590187 date "2020-11-01" @default.
- W2964590187 modified "2023-10-18" @default.
- W2964590187 title "Distilling actionable insights from big travel demand datasets for city planning" @default.
- W2964590187 cites W2019068362 @default.
- W2964590187 cites W2083251376 @default.
- W2964590187 cites W2088103525 @default.
- W2964590187 cites W2148163198 @default.
- W2964590187 cites W2153332743 @default.
- W2964590187 cites W2523976243 @default.
- W2964590187 doi "https://doi.org/10.1016/j.retrec.2020.100850" @default.
- W2964590187 hasPublicationYear "2020" @default.
- W2964590187 type Work @default.
- W2964590187 sameAs 2964590187 @default.
- W2964590187 citedByCount "2" @default.
- W2964590187 countsByYear W29645901872021 @default.
- W2964590187 countsByYear W29645901872023 @default.
- W2964590187 crossrefType "journal-article" @default.
- W2964590187 hasAuthorship W2964590187A5021031547 @default.
- W2964590187 hasAuthorship W2964590187A5025971736 @default.
- W2964590187 hasAuthorship W2964590187A5033238983 @default.
- W2964590187 hasAuthorship W2964590187A5058635344 @default.
- W2964590187 hasAuthorship W2964590187A5061056812 @default.
- W2964590187 hasAuthorship W2964590187A5078528325 @default.
- W2964590187 hasConcept C127413603 @default.
- W2964590187 hasConcept C144072006 @default.
- W2964590187 hasConcept C144133560 @default.
- W2964590187 hasConcept C22212356 @default.
- W2964590187 hasConcept C2522767166 @default.
- W2964590187 hasConcept C41008148 @default.
- W2964590187 hasConceptScore W2964590187C127413603 @default.
- W2964590187 hasConceptScore W2964590187C144072006 @default.
- W2964590187 hasConceptScore W2964590187C144133560 @default.
- W2964590187 hasConceptScore W2964590187C22212356 @default.
- W2964590187 hasConceptScore W2964590187C2522767166 @default.
- W2964590187 hasConceptScore W2964590187C41008148 @default.
- W2964590187 hasLocation W29645901871 @default.
- W2964590187 hasOpenAccess W2964590187 @default.
- W2964590187 hasPrimaryLocation W29645901871 @default.
- W2964590187 hasRelatedWork W1575663118 @default.
- W2964590187 hasRelatedWork W1993665286 @default.
- W2964590187 hasRelatedWork W2016719229 @default.
- W2964590187 hasRelatedWork W2144092255 @default.
- W2964590187 hasRelatedWork W2384678397 @default.
- W2964590187 hasRelatedWork W2796533952 @default.
- W2964590187 hasRelatedWork W2939957412 @default.
- W2964590187 hasRelatedWork W3097968637 @default.
- W2964590187 hasRelatedWork W4281639165 @default.
- W2964590187 hasRelatedWork W2068217665 @default.
- W2964590187 hasVolume "83" @default.
- W2964590187 isParatext "false" @default.
- W2964590187 isRetracted "false" @default.
- W2964590187 magId "2964590187" @default.
- W2964590187 workType "article" @default.