Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964592148> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2964592148 abstract "Ninety percent of the world data today was generated over the last two years, boosted by the great speed in which information is created over the Internet and the low prices for storage and sensors. This new paradigm is what we call Big Data. One of the biggest challenges in the field of Machine Learning today is how established algorithms perform on Big Data. The sheer size of these datasets can make it infeasible to use know algorithms to create a decision surfaces in a reasonable time. Support Vector Machines is one of the algorithms that experience a steep increase in runtime when creating a decision surface for Big Data. This fact led to the decline of its use for classification on these types of datasets. This dissertation introduces Voting Nearest Neighbors, a new preprocessing algorithm that assists Support Vector Machines on dealing with Big Data by creating a voting system based on k-nearest neighbors. The algorithm will select points close to the border between classes that have a higher chance of being used by a Support Vector Machine as Support Vectors, while removing outliers that would negatively impact the margin created. These points will be the only ones used in the training of the Support Vector Machine, allowing it to create the a decision surface in a reasonable time. In order to guarantee a good performance in a reasonable time, the algorithm is implemented in parallel using CUDA on GPU. The technique was successfully tested against 5 datasets that cover a broad range of sizes, from the Iris containing just 150 points to the Air Pressure system Failure and Operational Data for Scania Trucks Dataset which has 60,000 points, with an encouraging diminish in runtime for Big Data datasets and a impressive performance when used to classify imbalanced datasets." @default.
- W2964592148 created "2019-08-13" @default.
- W2964592148 creator A5077563533 @default.
- W2964592148 date "2020-05-26" @default.
- W2964592148 modified "2023-09-24" @default.
- W2964592148 title "VOTING NEAREST NEIGHBORS: SVM CONSTRAINTS SELECTION ALGORITHM BASED ON K-NEAREST NEIGHBORS" @default.
- W2964592148 cites W2028960610 @default.
- W2964592148 cites W2107772748 @default.
- W2964592148 doi "https://doi.org/10.23860/diss-moreira-da-costa-leandro-2019" @default.
- W2964592148 hasPublicationYear "2020" @default.
- W2964592148 type Work @default.
- W2964592148 sameAs 2964592148 @default.
- W2964592148 citedByCount "0" @default.
- W2964592148 crossrefType "dissertation" @default.
- W2964592148 hasAuthorship W2964592148A5077563533 @default.
- W2964592148 hasBestOaLocation W29645921481 @default.
- W2964592148 hasConcept C102164700 @default.
- W2964592148 hasConcept C104047586 @default.
- W2964592148 hasConcept C113238511 @default.
- W2964592148 hasConcept C11413529 @default.
- W2964592148 hasConcept C119857082 @default.
- W2964592148 hasConcept C12267149 @default.
- W2964592148 hasConcept C124101348 @default.
- W2964592148 hasConcept C148483581 @default.
- W2964592148 hasConcept C153180895 @default.
- W2964592148 hasConcept C154945302 @default.
- W2964592148 hasConcept C17744445 @default.
- W2964592148 hasConcept C199539241 @default.
- W2964592148 hasConcept C41008148 @default.
- W2964592148 hasConcept C520049643 @default.
- W2964592148 hasConcept C73555534 @default.
- W2964592148 hasConcept C81917197 @default.
- W2964592148 hasConcept C94625758 @default.
- W2964592148 hasConcept C94641424 @default.
- W2964592148 hasConceptScore W2964592148C102164700 @default.
- W2964592148 hasConceptScore W2964592148C104047586 @default.
- W2964592148 hasConceptScore W2964592148C113238511 @default.
- W2964592148 hasConceptScore W2964592148C11413529 @default.
- W2964592148 hasConceptScore W2964592148C119857082 @default.
- W2964592148 hasConceptScore W2964592148C12267149 @default.
- W2964592148 hasConceptScore W2964592148C124101348 @default.
- W2964592148 hasConceptScore W2964592148C148483581 @default.
- W2964592148 hasConceptScore W2964592148C153180895 @default.
- W2964592148 hasConceptScore W2964592148C154945302 @default.
- W2964592148 hasConceptScore W2964592148C17744445 @default.
- W2964592148 hasConceptScore W2964592148C199539241 @default.
- W2964592148 hasConceptScore W2964592148C41008148 @default.
- W2964592148 hasConceptScore W2964592148C520049643 @default.
- W2964592148 hasConceptScore W2964592148C73555534 @default.
- W2964592148 hasConceptScore W2964592148C81917197 @default.
- W2964592148 hasConceptScore W2964592148C94625758 @default.
- W2964592148 hasConceptScore W2964592148C94641424 @default.
- W2964592148 hasLocation W29645921481 @default.
- W2964592148 hasOpenAccess W2964592148 @default.
- W2964592148 hasPrimaryLocation W29645921481 @default.
- W2964592148 hasRelatedWork W1543987140 @default.
- W2964592148 hasRelatedWork W1999375585 @default.
- W2964592148 hasRelatedWork W2033932233 @default.
- W2964592148 hasRelatedWork W2046286070 @default.
- W2964592148 hasRelatedWork W2052025153 @default.
- W2964592148 hasRelatedWork W2110375079 @default.
- W2964592148 hasRelatedWork W2111964474 @default.
- W2964592148 hasRelatedWork W2261996212 @default.
- W2964592148 hasRelatedWork W2318352690 @default.
- W2964592148 hasRelatedWork W2321908408 @default.
- W2964592148 hasRelatedWork W2548536088 @default.
- W2964592148 hasRelatedWork W2738114984 @default.
- W2964592148 hasRelatedWork W2950591740 @default.
- W2964592148 hasRelatedWork W2954307060 @default.
- W2964592148 hasRelatedWork W2965419657 @default.
- W2964592148 hasRelatedWork W2996741889 @default.
- W2964592148 hasRelatedWork W3007691408 @default.
- W2964592148 hasRelatedWork W847014716 @default.
- W2964592148 hasRelatedWork W2747567071 @default.
- W2964592148 hasRelatedWork W3136962667 @default.
- W2964592148 isParatext "false" @default.
- W2964592148 isRetracted "false" @default.
- W2964592148 magId "2964592148" @default.
- W2964592148 workType "dissertation" @default.