Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964602661> ?p ?o ?g. }
- W2964602661 endingPage "762" @default.
- W2964602661 startingPage "749" @default.
- W2964602661 abstract "Background: A novel method to detect the text region from the natural image using the discriminative deep feature of text regions is presented with deep learning concept in this manuscript. Objective: Curve Text Detection (CTD) from the natural image is generally based on two different tasks: learning of text data and text region detection. In the learning of text data, the goal is to train the system with a sample of letters and natural images, while, in the text region detection, the aim is to confirm whether the detected regions are text region or not. The emphasis of this research is on the development of deep learning algorithm. Methods: A novel approach has been proposed to detect the text region from natural images which simultaneously tackles three combined challenges: 1) pre-processing of the image without losing text region; 2) appropriate segmentation of text region using their strokes, and 3) training of data. In pre-processing, image enhancement and binarization are done then morphological operations are defined with the Maximally Stable Extremal Region (MSER) based segmentation technique which operates on the basis of stroke region of text and then finds out the (Speed Up Robust Feature) SURF key point from those regions. Results: Based on the SURF feature, text region is detected from the images using a trained structure of Artificial Neural Network (ANN) which is based on deep learning mechanism. Conclusion: CTW-1500 dataset is used to simulate the proposed work and the parameters like Precision, Recall, F-Measure (H-mean), Execution time, Accuracy and Error Rate are computed and are compared with the existing work to depict the effectiveness of the work." @default.
- W2964602661 created "2019-08-13" @default.
- W2964602661 creator A5000743924 @default.
- W2964602661 creator A5001426742 @default.
- W2964602661 creator A5008155385 @default.
- W2964602661 creator A5012794152 @default.
- W2964602661 creator A5025463092 @default.
- W2964602661 creator A5026785721 @default.
- W2964602661 creator A5026895686 @default.
- W2964602661 creator A5031035000 @default.
- W2964602661 creator A5032042554 @default.
- W2964602661 creator A5035463245 @default.
- W2964602661 creator A5036017007 @default.
- W2964602661 creator A5037072581 @default.
- W2964602661 creator A5041428779 @default.
- W2964602661 creator A5041660050 @default.
- W2964602661 creator A5042285615 @default.
- W2964602661 creator A5043031792 @default.
- W2964602661 creator A5044267197 @default.
- W2964602661 creator A5044522627 @default.
- W2964602661 creator A5048624430 @default.
- W2964602661 creator A5050562433 @default.
- W2964602661 creator A5052689689 @default.
- W2964602661 creator A5053029002 @default.
- W2964602661 creator A5055217807 @default.
- W2964602661 creator A5055403840 @default.
- W2964602661 creator A5056742611 @default.
- W2964602661 creator A5060545764 @default.
- W2964602661 creator A5060755635 @default.
- W2964602661 creator A5068206764 @default.
- W2964602661 creator A5071147910 @default.
- W2964602661 creator A5072543380 @default.
- W2964602661 creator A5072586908 @default.
- W2964602661 creator A5075883220 @default.
- W2964602661 creator A5081001542 @default.
- W2964602661 creator A5081575310 @default.
- W2964602661 creator A5081870029 @default.
- W2964602661 creator A5082783053 @default.
- W2964602661 creator A5089020602 @default.
- W2964602661 creator A5089366163 @default.
- W2964602661 creator A5089796810 @default.
- W2964602661 creator A5091913514 @default.
- W2964602661 date "2021-02-09" @default.
- W2964602661 modified "2023-09-27" @default.
- W2964602661 title "Intellectual Curve Scene Text Detection from Natural Images Using MSER Descriptor Based Region Segmentation Approach" @default.
- W2964602661 cites W117491841 @default.
- W2964602661 cites W1456051393 @default.
- W2964602661 cites W1521064364 @default.
- W2964602661 cites W2019478948 @default.
- W2964602661 cites W2020964295 @default.
- W2964602661 cites W2135231474 @default.
- W2964602661 cites W2142159465 @default.
- W2964602661 cites W2144506857 @default.
- W2964602661 cites W2194187530 @default.
- W2964602661 cites W2519818067 @default.
- W2964602661 cites W2605076167 @default.
- W2964602661 cites W2605982830 @default.
- W2964602661 cites W2738854914 @default.
- W2964602661 cites W2768073432 @default.
- W2964602661 cites W2784050770 @default.
- W2964602661 cites W2963187132 @default.
- W2964602661 cites W2963996347 @default.
- W2964602661 cites W3104991093 @default.
- W2964602661 doi "https://doi.org/10.2174/2210327909666190807092724" @default.
- W2964602661 hasPublicationYear "2021" @default.
- W2964602661 type Work @default.
- W2964602661 sameAs 2964602661 @default.
- W2964602661 citedByCount "0" @default.
- W2964602661 crossrefType "journal-article" @default.
- W2964602661 hasAuthorship W2964602661A5000743924 @default.
- W2964602661 hasAuthorship W2964602661A5001426742 @default.
- W2964602661 hasAuthorship W2964602661A5008155385 @default.
- W2964602661 hasAuthorship W2964602661A5012794152 @default.
- W2964602661 hasAuthorship W2964602661A5025463092 @default.
- W2964602661 hasAuthorship W2964602661A5026785721 @default.
- W2964602661 hasAuthorship W2964602661A5026895686 @default.
- W2964602661 hasAuthorship W2964602661A5031035000 @default.
- W2964602661 hasAuthorship W2964602661A5032042554 @default.
- W2964602661 hasAuthorship W2964602661A5035463245 @default.
- W2964602661 hasAuthorship W2964602661A5036017007 @default.
- W2964602661 hasAuthorship W2964602661A5037072581 @default.
- W2964602661 hasAuthorship W2964602661A5041428779 @default.
- W2964602661 hasAuthorship W2964602661A5041660050 @default.
- W2964602661 hasAuthorship W2964602661A5042285615 @default.
- W2964602661 hasAuthorship W2964602661A5043031792 @default.
- W2964602661 hasAuthorship W2964602661A5044267197 @default.
- W2964602661 hasAuthorship W2964602661A5044522627 @default.
- W2964602661 hasAuthorship W2964602661A5048624430 @default.
- W2964602661 hasAuthorship W2964602661A5050562433 @default.
- W2964602661 hasAuthorship W2964602661A5052689689 @default.
- W2964602661 hasAuthorship W2964602661A5053029002 @default.
- W2964602661 hasAuthorship W2964602661A5055217807 @default.
- W2964602661 hasAuthorship W2964602661A5055403840 @default.
- W2964602661 hasAuthorship W2964602661A5056742611 @default.
- W2964602661 hasAuthorship W2964602661A5060545764 @default.
- W2964602661 hasAuthorship W2964602661A5060755635 @default.
- W2964602661 hasAuthorship W2964602661A5068206764 @default.
- W2964602661 hasAuthorship W2964602661A5071147910 @default.