Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964622045> ?p ?o ?g. }
- W2964622045 endingPage "552" @default.
- W2964622045 startingPage "540" @default.
- W2964622045 abstract "Background. Developing efficient procedures of model calibration, which entails matching model predictions to observed outcomes, has gained increasing attention. With faithful but complex simulation models established for cancer diseases, key parameters of cancer natural history can be investigated for possible fits, which can subsequently inform optimal prevention and treatment strategies. When multiple calibration targets exist, one approach to identifying optimal parameters relies on the Pareto frontier. However, computational burdens associated with higher-dimensional parameter spaces require a metamodeling approach. The goal of this work is to explore multiobjective calibration using Gaussian process regression (GPR) with an eye toward how multiple goodness-of-fit (GOF) criteria identify Pareto-optimal parameters. Methods. We applied GPR, a metamodeling technique, to estimate colorectal cancer (CRC)-related prevalence rates simulated from a microsimulation model of CRC natural history, known as the Colon Modeling Open Source Tool (CMOST). We embedded GPR metamodels within a Pareto optimization framework to identify best-fitting parameters for age-, adenoma-, and adenoma staging-dependent transition probabilities and risk factors. The Pareto frontier approach is demonstrated using genetic algorithms with both sum-of-squared errors (SSEs) and Poisson deviance GOF criteria. Results. The GPR metamodel is able to approximate CMOST outputs accurately on 2 separate parameter sets. Both GOF criteria are able to identify different best-fitting parameter sets on the Pareto frontier. The SSE criterion emphasizes the importance of age-specific adenoma progression parameters, while the Poisson criterion prioritizes adenoma-specific progression parameters. Conclusion. Different GOF criteria assert different components of the CRC natural history. The combination of multiobjective optimization and nonparametric regression, along with diverse GOF criteria, can advance the calibration process by identifying optimal regions of the underlying parameter landscape." @default.
- W2964622045 created "2019-08-13" @default.
- W2964622045 creator A5024364442 @default.
- W2964622045 creator A5036726078 @default.
- W2964622045 creator A5043224397 @default.
- W2964622045 creator A5049992511 @default.
- W2964622045 date "2019-07-01" @default.
- W2964622045 modified "2023-09-26" @default.
- W2964622045 title "Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes" @default.
- W2964622045 cites W1482581820 @default.
- W2964622045 cites W1757407923 @default.
- W2964622045 cites W1965217183 @default.
- W2964622045 cites W1983347724 @default.
- W2964622045 cites W2024991751 @default.
- W2964622045 cites W2025000283 @default.
- W2964622045 cites W2034380059 @default.
- W2964622045 cites W2041925154 @default.
- W2964622045 cites W2055656148 @default.
- W2964622045 cites W2058923947 @default.
- W2964622045 cites W2088479878 @default.
- W2964622045 cites W2109752983 @default.
- W2964622045 cites W2126105956 @default.
- W2964622045 cites W2130358353 @default.
- W2964622045 cites W2131553265 @default.
- W2964622045 cites W2140011409 @default.
- W2964622045 cites W2144360395 @default.
- W2964622045 cites W2151340740 @default.
- W2964622045 cites W2167963428 @default.
- W2964622045 cites W2168787488 @default.
- W2964622045 cites W2170239385 @default.
- W2964622045 cites W2171074980 @default.
- W2964622045 cites W2327523825 @default.
- W2964622045 cites W2408410815 @default.
- W2964622045 cites W2623271843 @default.
- W2964622045 cites W2893800592 @default.
- W2964622045 doi "https://doi.org/10.1177/0272989x19862560" @default.
- W2964622045 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6786931" @default.
- W2964622045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31375053" @default.
- W2964622045 hasPublicationYear "2019" @default.
- W2964622045 type Work @default.
- W2964622045 sameAs 2964622045 @default.
- W2964622045 citedByCount "6" @default.
- W2964622045 countsByYear W29646220452020 @default.
- W2964622045 countsByYear W29646220452021 @default.
- W2964622045 countsByYear W29646220452022 @default.
- W2964622045 countsByYear W29646220452023 @default.
- W2964622045 crossrefType "journal-article" @default.
- W2964622045 hasAuthorship W2964622045A5024364442 @default.
- W2964622045 hasAuthorship W2964622045A5036726078 @default.
- W2964622045 hasAuthorship W2964622045A5043224397 @default.
- W2964622045 hasAuthorship W2964622045A5049992511 @default.
- W2964622045 hasBestOaLocation W29646220452 @default.
- W2964622045 hasConcept C105795698 @default.
- W2964622045 hasConcept C119857082 @default.
- W2964622045 hasConcept C124101348 @default.
- W2964622045 hasConcept C126255220 @default.
- W2964622045 hasConcept C137635306 @default.
- W2964622045 hasConcept C149782125 @default.
- W2964622045 hasConcept C165838908 @default.
- W2964622045 hasConcept C199360897 @default.
- W2964622045 hasConcept C33923547 @default.
- W2964622045 hasConcept C41008148 @default.
- W2964622045 hasConcept C81692654 @default.
- W2964622045 hasConcept C86610423 @default.
- W2964622045 hasConceptScore W2964622045C105795698 @default.
- W2964622045 hasConceptScore W2964622045C119857082 @default.
- W2964622045 hasConceptScore W2964622045C124101348 @default.
- W2964622045 hasConceptScore W2964622045C126255220 @default.
- W2964622045 hasConceptScore W2964622045C137635306 @default.
- W2964622045 hasConceptScore W2964622045C149782125 @default.
- W2964622045 hasConceptScore W2964622045C165838908 @default.
- W2964622045 hasConceptScore W2964622045C199360897 @default.
- W2964622045 hasConceptScore W2964622045C33923547 @default.
- W2964622045 hasConceptScore W2964622045C41008148 @default.
- W2964622045 hasConceptScore W2964622045C81692654 @default.
- W2964622045 hasConceptScore W2964622045C86610423 @default.
- W2964622045 hasFunder F4320309408 @default.
- W2964622045 hasFunder F4320337351 @default.
- W2964622045 hasIssue "5" @default.
- W2964622045 hasLocation W29646220451 @default.
- W2964622045 hasLocation W29646220452 @default.
- W2964622045 hasLocation W29646220453 @default.
- W2964622045 hasOpenAccess W2964622045 @default.
- W2964622045 hasPrimaryLocation W29646220451 @default.
- W2964622045 hasRelatedWork W1976294799 @default.
- W2964622045 hasRelatedWork W2054889324 @default.
- W2964622045 hasRelatedWork W2399446748 @default.
- W2964622045 hasRelatedWork W2794092268 @default.
- W2964622045 hasRelatedWork W2995108107 @default.
- W2964622045 hasRelatedWork W3158288196 @default.
- W2964622045 hasRelatedWork W3162972149 @default.
- W2964622045 hasRelatedWork W4200551736 @default.
- W2964622045 hasRelatedWork W4250301553 @default.
- W2964622045 hasRelatedWork W2890550405 @default.
- W2964622045 hasVolume "39" @default.
- W2964622045 isParatext "false" @default.
- W2964622045 isRetracted "false" @default.
- W2964622045 magId "2964622045" @default.