Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964684313> ?p ?o ?g. }
- W2964684313 endingPage "122142" @default.
- W2964684313 startingPage "122142" @default.
- W2964684313 abstract "Abstract In the current work, we investigate the dynamic viscosity of Ag/Ethylene glycol nanofluid within the temperature range of 25–55 ° C with volume fraction of nanoparticles range of 0.2%–2%. The experimental data includes 42 samples. At first, an Artificial Neural Network (ANN) is designed to predict the dynamic viscosity of this nanofluid and finally the results of ANN and correlation has been compared. The algorithm of generating the best architecture of ANN has been proposed and the best ANN has been used to predict the dynamic viscosity of Silver/Ethylene glycol nanofluid. It is found that the ANN can predict the viscosity of Ag/Ethylene glycol nanofluid with good precision compared to the correlation method. Also, in the correlation method, MSE is 0.0012, SSE is 0.0512 and the maximum value of error is 0.0858." @default.
- W2964684313 created "2019-08-13" @default.
- W2964684313 creator A5015351683 @default.
- W2964684313 creator A5034312242 @default.
- W2964684313 creator A5053034394 @default.
- W2964684313 creator A5073601146 @default.
- W2964684313 creator A5081292792 @default.
- W2964684313 date "2019-11-01" @default.
- W2964684313 modified "2023-10-02" @default.
- W2964684313 title "Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles" @default.
- W2964684313 cites W2031928344 @default.
- W2964684313 cites W2046086320 @default.
- W2964684313 cites W2094077048 @default.
- W2964684313 cites W2166572882 @default.
- W2964684313 cites W2193834300 @default.
- W2964684313 cites W2214851944 @default.
- W2964684313 cites W2323810961 @default.
- W2964684313 cites W2336038900 @default.
- W2964684313 cites W2337824365 @default.
- W2964684313 cites W2340029627 @default.
- W2964684313 cites W2343035879 @default.
- W2964684313 cites W2396111381 @default.
- W2964684313 cites W2400390985 @default.
- W2964684313 cites W2407225529 @default.
- W2964684313 cites W2407460391 @default.
- W2964684313 cites W2462216100 @default.
- W2964684313 cites W2514459358 @default.
- W2964684313 cites W2517752774 @default.
- W2964684313 cites W2548009842 @default.
- W2964684313 cites W2549167055 @default.
- W2964684313 cites W2558295627 @default.
- W2964684313 cites W2584144234 @default.
- W2964684313 cites W2590559082 @default.
- W2964684313 cites W2591864409 @default.
- W2964684313 cites W2592063757 @default.
- W2964684313 cites W2599117839 @default.
- W2964684313 cites W2605216613 @default.
- W2964684313 cites W2606232190 @default.
- W2964684313 cites W2615370547 @default.
- W2964684313 cites W2618749693 @default.
- W2964684313 cites W2708786377 @default.
- W2964684313 cites W2718709138 @default.
- W2964684313 cites W2734308509 @default.
- W2964684313 cites W2744142789 @default.
- W2964684313 cites W2750879769 @default.
- W2964684313 cites W2752339231 @default.
- W2964684313 cites W2752525292 @default.
- W2964684313 cites W2755376271 @default.
- W2964684313 cites W2762504945 @default.
- W2964684313 cites W2765270587 @default.
- W2964684313 cites W2772541234 @default.
- W2964684313 cites W2773050783 @default.
- W2964684313 cites W2781611473 @default.
- W2964684313 cites W2789990382 @default.
- W2964684313 cites W2792909069 @default.
- W2964684313 cites W2793435206 @default.
- W2964684313 cites W2800352892 @default.
- W2964684313 cites W2802454121 @default.
- W2964684313 cites W2811140227 @default.
- W2964684313 cites W2893316097 @default.
- W2964684313 cites W2928527251 @default.
- W2964684313 cites W2935444557 @default.
- W2964684313 cites W2963056712 @default.
- W2964684313 doi "https://doi.org/10.1016/j.physa.2019.122142" @default.
- W2964684313 hasPublicationYear "2019" @default.
- W2964684313 type Work @default.
- W2964684313 sameAs 2964684313 @default.
- W2964684313 citedByCount "127" @default.
- W2964684313 countsByYear W29646843132020 @default.
- W2964684313 countsByYear W29646843132021 @default.
- W2964684313 countsByYear W29646843132022 @default.
- W2964684313 countsByYear W29646843132023 @default.
- W2964684313 crossrefType "journal-article" @default.
- W2964684313 hasAuthorship W2964684313A5015351683 @default.
- W2964684313 hasAuthorship W2964684313A5034312242 @default.
- W2964684313 hasAuthorship W2964684313A5053034394 @default.
- W2964684313 hasAuthorship W2964684313A5073601146 @default.
- W2964684313 hasAuthorship W2964684313A5081292792 @default.
- W2964684313 hasConcept C121332964 @default.
- W2964684313 hasConcept C127172972 @default.
- W2964684313 hasConcept C127413603 @default.
- W2964684313 hasConcept C149629883 @default.
- W2964684313 hasConcept C154945302 @default.
- W2964684313 hasConcept C155672457 @default.
- W2964684313 hasConcept C159985019 @default.
- W2964684313 hasConcept C171250308 @default.
- W2964684313 hasConcept C185592680 @default.
- W2964684313 hasConcept C192562407 @default.
- W2964684313 hasConcept C20556612 @default.
- W2964684313 hasConcept C21946209 @default.
- W2964684313 hasConcept C2777516009 @default.
- W2964684313 hasConcept C41008148 @default.
- W2964684313 hasConcept C42360764 @default.
- W2964684313 hasConcept C43617362 @default.
- W2964684313 hasConcept C50644808 @default.
- W2964684313 hasConcept C65590680 @default.
- W2964684313 hasConcept C97355855 @default.
- W2964684313 hasConceptScore W2964684313C121332964 @default.