Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964730897> ?p ?o ?g. }
- W2964730897 endingPage "2509" @default.
- W2964730897 startingPage "2487" @default.
- W2964730897 abstract "Abstract. A key challenge in developing flagship climate model configurations is the process of setting uncertain input parameters at values that lead to credible climate simulations. Setting these parameters traditionally relies heavily on insights from those involved in parameterisation of the underlying climate processes. Given the many degrees of freedom and computational expense involved in evaluating such a selection, this can be imperfect leaving open questions about whether any subsequent simulated biases result from mis-set parameters or wider structural model errors (such as missing or partially parameterised processes). Here, we present a complementary approach to identifying plausible climate model parameters, with a method of bias correcting subcomponents of a climate model using a Gaussian process emulator that allows credible values of model input parameters to be found even in the presence of a significant model bias. A previous study (McNeall et al., 2016) found that a climate model had to be run using land surface input parameter values from very different, almost non-overlapping, parts of parameter space to satisfactorily simulate the Amazon and other forests respectively. As the forest fraction of modelled non-Amazon forests was broadly correct at the default parameter settings and the Amazon too low, that study suggested that the problem most likely lay in the model's treatment of non-plant processes in the Amazon region. This might be due to modelling errors such as missing deep rooting in the Amazon in the land surface component of the climate model, to a warm–dry bias in the Amazon climate of the model or a combination of both. In this study, we bias correct the climate of the Amazon in the climate model from McNeall et al. (2016) using an “augmented” Gaussian process emulator, where temperature and precipitation, variables usually regarded as model outputs, are treated as model inputs alongside land surface input parameters. A sensitivity analysis finds that the forest fraction is nearly as sensitive to climate variables as it is to changes in its land surface parameter values. Bias correcting the climate in the Amazon region using the emulator corrects the forest fraction to tolerable levels in the Amazon at many candidates for land surface input parameter values, including the default ones, and increases the valid input space shared with the other forests. We need not invoke a structural model error in the land surface model, beyond having too dry and hot a climate in the Amazon region. The augmented emulator allows bias correction of an ensemble of climate model runs and reduces the risk of choosing poor parameter values because of an error in a subcomponent of the model. We discuss the potential of the augmented emulator to act as a translational layer between model subcomponents, simplifying the process of model tuning when there are compensating errors and helping model developers discover and prioritise model errors to target." @default.
- W2964730897 created "2019-08-13" @default.
- W2964730897 creator A5010767960 @default.
- W2964730897 creator A5018749393 @default.
- W2964730897 creator A5026340579 @default.
- W2964730897 creator A5035579254 @default.
- W2964730897 creator A5063073500 @default.
- W2964730897 creator A5069157991 @default.
- W2964730897 creator A5077764002 @default.
- W2964730897 date "2020-05-29" @default.
- W2964730897 modified "2023-10-01" @default.
- W2964730897 title "Correcting a bias in a climate model with an augmented emulator" @default.
- W2964730897 cites W1840389249 @default.
- W2964730897 cites W1880089522 @default.
- W2964730897 cites W1966396962 @default.
- W2964730897 cites W1967579272 @default.
- W2964730897 cites W1973333099 @default.
- W2964730897 cites W1977212456 @default.
- W2964730897 cites W1990958103 @default.
- W2964730897 cites W1992913659 @default.
- W2964730897 cites W2002884927 @default.
- W2964730897 cites W2018044188 @default.
- W2964730897 cites W2025909913 @default.
- W2964730897 cites W2054934527 @default.
- W2964730897 cites W2066230348 @default.
- W2964730897 cites W2072028796 @default.
- W2964730897 cites W2077203913 @default.
- W2964730897 cites W2079054072 @default.
- W2964730897 cites W2080411662 @default.
- W2964730897 cites W2092496216 @default.
- W2964730897 cites W2096809505 @default.
- W2964730897 cites W2104155220 @default.
- W2964730897 cites W2114453313 @default.
- W2964730897 cites W2117190931 @default.
- W2964730897 cites W2120220555 @default.
- W2964730897 cites W2121604218 @default.
- W2964730897 cites W2127559745 @default.
- W2964730897 cites W2149696357 @default.
- W2964730897 cites W2155618577 @default.
- W2964730897 cites W2157280842 @default.
- W2964730897 cites W2162323974 @default.
- W2964730897 cites W2168945034 @default.
- W2964730897 cites W2287992427 @default.
- W2964730897 cites W2344153229 @default.
- W2964730897 cites W2495412896 @default.
- W2964730897 cites W2588404019 @default.
- W2964730897 cites W2609651631 @default.
- W2964730897 cites W2789854955 @default.
- W2964730897 cites W2792692517 @default.
- W2964730897 cites W4241793634 @default.
- W2964730897 cites W4243645092 @default.
- W2964730897 doi "https://doi.org/10.5194/gmd-13-2487-2020" @default.
- W2964730897 hasPublicationYear "2020" @default.
- W2964730897 type Work @default.
- W2964730897 sameAs 2964730897 @default.
- W2964730897 citedByCount "3" @default.
- W2964730897 countsByYear W29647308972021 @default.
- W2964730897 countsByYear W29647308972022 @default.
- W2964730897 countsByYear W29647308972023 @default.
- W2964730897 crossrefType "journal-article" @default.
- W2964730897 hasAuthorship W2964730897A5010767960 @default.
- W2964730897 hasAuthorship W2964730897A5018749393 @default.
- W2964730897 hasAuthorship W2964730897A5026340579 @default.
- W2964730897 hasAuthorship W2964730897A5035579254 @default.
- W2964730897 hasAuthorship W2964730897A5063073500 @default.
- W2964730897 hasAuthorship W2964730897A5069157991 @default.
- W2964730897 hasAuthorship W2964730897A5077764002 @default.
- W2964730897 hasBestOaLocation W29647308971 @default.
- W2964730897 hasConcept C105795698 @default.
- W2964730897 hasConcept C111919701 @default.
- W2964730897 hasConcept C121332964 @default.
- W2964730897 hasConcept C127313418 @default.
- W2964730897 hasConcept C132651083 @default.
- W2964730897 hasConcept C138885662 @default.
- W2964730897 hasConcept C149782125 @default.
- W2964730897 hasConcept C153294291 @default.
- W2964730897 hasConcept C163716315 @default.
- W2964730897 hasConcept C168754636 @default.
- W2964730897 hasConcept C177264268 @default.
- W2964730897 hasConcept C18903297 @default.
- W2964730897 hasConcept C199360897 @default.
- W2964730897 hasConcept C205649164 @default.
- W2964730897 hasConcept C208081375 @default.
- W2964730897 hasConcept C2780310539 @default.
- W2964730897 hasConcept C33923547 @default.
- W2964730897 hasConcept C39432304 @default.
- W2964730897 hasConcept C41008148 @default.
- W2964730897 hasConcept C41895202 @default.
- W2964730897 hasConcept C49204034 @default.
- W2964730897 hasConcept C535291247 @default.
- W2964730897 hasConcept C61326573 @default.
- W2964730897 hasConcept C62520636 @default.
- W2964730897 hasConcept C73586568 @default.
- W2964730897 hasConcept C86803240 @default.
- W2964730897 hasConcept C93959086 @default.
- W2964730897 hasConcept C98045186 @default.
- W2964730897 hasConceptScore W2964730897C105795698 @default.
- W2964730897 hasConceptScore W2964730897C111919701 @default.