Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964749018> ?p ?o ?g. }
- W2964749018 endingPage "112866" @default.
- W2964749018 startingPage "112866" @default.
- W2964749018 abstract "Breast Cancer is a common disease and to prevent it, the disease must be identified at earlier stages. Available breast cancer datasets are unbalanced in nature, i.e. there are more instances of benign (non-cancerous) cases then malignant (cancerous) ones. Therefore, it is a challenging task for most machine learning (ML) models to classify between benign and malignant cases properly, even though they have high accuracy. Accuracy is not a good metric to assess the results of ML models on breast cancer dataset because of biased results. To address this issue, we use Genetic Programming (GP) and propose two fitness functions. First one is F2 score which focuses on learning more about the minority class, which contains more relevant information, the second one is a novel fitness function known as Distance score (D score) which learns about both the classes by giving them equal importance and being unbiased. The GP framework in which we implemented D score is named as D-score GP (DGP) and the framework implemented with F2 score is named as F2GP. The proposed F2GP achieved a maximum accuracy of 99.63%, 99.51% and 100% for 60-40, 70-30 partition schemes and 10 fold cross validation scheme respectively and DGP achieves a maximum accuracy of 99.63%, 98.5% and 100% in 60-40, 70-30 partition schemes and 10 fold cross validation scheme respectively. The proposed models also achieves a recall of 100% for all the test cases. This shows that using a new fitness function for unbalanced data classification improves the performance of a classifier." @default.
- W2964749018 created "2019-08-13" @default.
- W2964749018 creator A5002537404 @default.
- W2964749018 creator A5031590482 @default.
- W2964749018 creator A5039186971 @default.
- W2964749018 creator A5040631655 @default.
- W2964749018 creator A5070466741 @default.
- W2964749018 date "2020-02-01" @default.
- W2964749018 modified "2023-10-18" @default.
- W2964749018 title "Unbalanced breast cancer data classification using novel fitness functions in genetic programming" @default.
- W2964749018 cites W1833977909 @default.
- W2964749018 cites W1941659294 @default.
- W2964749018 cites W1965173537 @default.
- W2964749018 cites W1975580029 @default.
- W2964749018 cites W1982934478 @default.
- W2964749018 cites W1985842955 @default.
- W2964749018 cites W1996313056 @default.
- W2964749018 cites W2003087683 @default.
- W2964749018 cites W2004320486 @default.
- W2964749018 cites W2005755365 @default.
- W2964749018 cites W2015776218 @default.
- W2964749018 cites W2043539979 @default.
- W2964749018 cites W2056137745 @default.
- W2964749018 cites W2066393173 @default.
- W2964749018 cites W2071529495 @default.
- W2964749018 cites W2083780116 @default.
- W2964749018 cites W2156323704 @default.
- W2964749018 cites W2167389327 @default.
- W2964749018 cites W2173226459 @default.
- W2964749018 cites W2295985801 @default.
- W2964749018 cites W2324255546 @default.
- W2964749018 cites W2507278300 @default.
- W2964749018 cites W2549437329 @default.
- W2964749018 cites W2559900391 @default.
- W2964749018 cites W2560205181 @default.
- W2964749018 cites W2561467560 @default.
- W2964749018 cites W2561856575 @default.
- W2964749018 cites W2576787043 @default.
- W2964749018 cites W2585770658 @default.
- W2964749018 cites W2586862787 @default.
- W2964749018 cites W2600686376 @default.
- W2964749018 cites W2767106145 @default.
- W2964749018 cites W2795726520 @default.
- W2964749018 cites W2808757192 @default.
- W2964749018 cites W2886310805 @default.
- W2964749018 cites W2922034350 @default.
- W2964749018 doi "https://doi.org/10.1016/j.eswa.2019.112866" @default.
- W2964749018 hasPublicationYear "2020" @default.
- W2964749018 type Work @default.
- W2964749018 sameAs 2964749018 @default.
- W2964749018 citedByCount "77" @default.
- W2964749018 countsByYear W29647490182019 @default.
- W2964749018 countsByYear W29647490182020 @default.
- W2964749018 countsByYear W29647490182021 @default.
- W2964749018 countsByYear W29647490182022 @default.
- W2964749018 countsByYear W29647490182023 @default.
- W2964749018 crossrefType "journal-article" @default.
- W2964749018 hasAuthorship W2964749018A5002537404 @default.
- W2964749018 hasAuthorship W2964749018A5031590482 @default.
- W2964749018 hasAuthorship W2964749018A5039186971 @default.
- W2964749018 hasAuthorship W2964749018A5040631655 @default.
- W2964749018 hasAuthorship W2964749018A5070466741 @default.
- W2964749018 hasConcept C110332635 @default.
- W2964749018 hasConcept C114614502 @default.
- W2964749018 hasConcept C119857082 @default.
- W2964749018 hasConcept C121608353 @default.
- W2964749018 hasConcept C126322002 @default.
- W2964749018 hasConcept C148524875 @default.
- W2964749018 hasConcept C154945302 @default.
- W2964749018 hasConcept C162324750 @default.
- W2964749018 hasConcept C16910744 @default.
- W2964749018 hasConcept C176066374 @default.
- W2964749018 hasConcept C176217482 @default.
- W2964749018 hasConcept C199360897 @default.
- W2964749018 hasConcept C21547014 @default.
- W2964749018 hasConcept C27181475 @default.
- W2964749018 hasConcept C33923547 @default.
- W2964749018 hasConcept C41008148 @default.
- W2964749018 hasConcept C42812 @default.
- W2964749018 hasConcept C530470458 @default.
- W2964749018 hasConcept C71924100 @default.
- W2964749018 hasConcept C81669768 @default.
- W2964749018 hasConcept C8880873 @default.
- W2964749018 hasConceptScore W2964749018C110332635 @default.
- W2964749018 hasConceptScore W2964749018C114614502 @default.
- W2964749018 hasConceptScore W2964749018C119857082 @default.
- W2964749018 hasConceptScore W2964749018C121608353 @default.
- W2964749018 hasConceptScore W2964749018C126322002 @default.
- W2964749018 hasConceptScore W2964749018C148524875 @default.
- W2964749018 hasConceptScore W2964749018C154945302 @default.
- W2964749018 hasConceptScore W2964749018C162324750 @default.
- W2964749018 hasConceptScore W2964749018C16910744 @default.
- W2964749018 hasConceptScore W2964749018C176066374 @default.
- W2964749018 hasConceptScore W2964749018C176217482 @default.
- W2964749018 hasConceptScore W2964749018C199360897 @default.
- W2964749018 hasConceptScore W2964749018C21547014 @default.
- W2964749018 hasConceptScore W2964749018C27181475 @default.
- W2964749018 hasConceptScore W2964749018C33923547 @default.