Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964751504> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2964751504 abstract "Text data mining is the process of extracting and analyzing valuable information from text. A text data mining process generally consists of lexical and syntax analysis of input text data, the removal of non-informative linguistic features and the representation of text data in appropriate formats, and eventually analysis and interpretation of the output. Text categorization, text clustering, sentiment analysis, and document summarization are some of the important applications of text mining. In this study, we analyze and compare the performance of text categorization by using different single classifiers, an ensemble of classifiers, a neural probabilistic representation model called word2vec on English texts. The neural probabilistic based model namely, word2vec, enables the representation of terms of a text in a new and smaller space with word embedding vectors instead of using original terms. After the representation of text data in new feature space, the training procedure is carried out with the well-known classification algorithms, namely multivariate Bernoulli naive Bayes, support vector machines and decision trees and an ensemble algorithm such as bagging, random subspace and random forest. A wide range of comparative experiments are conducted on English texts to analyze the effectiveness of word embeddings on text classification. The evaluation of experimental results demonstrates that an ensemble of algorithms models with word embeddings performs better than other classification algorithms that uses traditional methods on English texts." @default.
- W2964751504 created "2019-08-13" @default.
- W2964751504 creator A5060746555 @default.
- W2964751504 creator A5089064593 @default.
- W2964751504 date "2019-07-01" @default.
- W2964751504 modified "2023-09-26" @default.
- W2964751504 title "The Analysis of Text Categorization Represented With Word Embeddings Using Homogeneous Classifiers" @default.
- W2964751504 cites W1550206324 @default.
- W2964751504 cites W1575403013 @default.
- W2964751504 cites W1658663095 @default.
- W2964751504 cites W1989568037 @default.
- W2964751504 cites W2011439727 @default.
- W2964751504 cites W2113242816 @default.
- W2964751504 cites W2132339004 @default.
- W2964751504 cites W2139212933 @default.
- W2964751504 cites W2140336868 @default.
- W2964751504 cites W2148239836 @default.
- W2964751504 cites W2153579005 @default.
- W2964751504 cites W2163922914 @default.
- W2964751504 cites W2244486986 @default.
- W2964751504 cites W2317515691 @default.
- W2964751504 cites W2443127790 @default.
- W2964751504 cites W2523138083 @default.
- W2964751504 cites W2728299043 @default.
- W2964751504 cites W2739814808 @default.
- W2964751504 cites W2743399036 @default.
- W2964751504 cites W2746802549 @default.
- W2964751504 cites W2911964244 @default.
- W2964751504 doi "https://doi.org/10.1109/inista.2019.8778329" @default.
- W2964751504 hasPublicationYear "2019" @default.
- W2964751504 type Work @default.
- W2964751504 sameAs 2964751504 @default.
- W2964751504 citedByCount "3" @default.
- W2964751504 countsByYear W29647515042020 @default.
- W2964751504 countsByYear W29647515042021 @default.
- W2964751504 countsByYear W29647515042022 @default.
- W2964751504 crossrefType "proceedings-article" @default.
- W2964751504 hasAuthorship W2964751504A5060746555 @default.
- W2964751504 hasAuthorship W2964751504A5089064593 @default.
- W2964751504 hasConcept C12267149 @default.
- W2964751504 hasConcept C13672336 @default.
- W2964751504 hasConcept C154945302 @default.
- W2964751504 hasConcept C170858558 @default.
- W2964751504 hasConcept C204321447 @default.
- W2964751504 hasConcept C2524010 @default.
- W2964751504 hasConcept C2776461190 @default.
- W2964751504 hasConcept C33923547 @default.
- W2964751504 hasConcept C41008148 @default.
- W2964751504 hasConcept C41608201 @default.
- W2964751504 hasConcept C52001869 @default.
- W2964751504 hasConcept C66402592 @default.
- W2964751504 hasConcept C66945725 @default.
- W2964751504 hasConcept C90805587 @default.
- W2964751504 hasConceptScore W2964751504C12267149 @default.
- W2964751504 hasConceptScore W2964751504C13672336 @default.
- W2964751504 hasConceptScore W2964751504C154945302 @default.
- W2964751504 hasConceptScore W2964751504C170858558 @default.
- W2964751504 hasConceptScore W2964751504C204321447 @default.
- W2964751504 hasConceptScore W2964751504C2524010 @default.
- W2964751504 hasConceptScore W2964751504C2776461190 @default.
- W2964751504 hasConceptScore W2964751504C33923547 @default.
- W2964751504 hasConceptScore W2964751504C41008148 @default.
- W2964751504 hasConceptScore W2964751504C41608201 @default.
- W2964751504 hasConceptScore W2964751504C52001869 @default.
- W2964751504 hasConceptScore W2964751504C66402592 @default.
- W2964751504 hasConceptScore W2964751504C66945725 @default.
- W2964751504 hasConceptScore W2964751504C90805587 @default.
- W2964751504 hasLocation W29647515041 @default.
- W2964751504 hasOpenAccess W2964751504 @default.
- W2964751504 hasPrimaryLocation W29647515041 @default.
- W2964751504 hasRelatedWork W1509238594 @default.
- W2964751504 hasRelatedWork W1532837156 @default.
- W2964751504 hasRelatedWork W1730404227 @default.
- W2964751504 hasRelatedWork W2030045442 @default.
- W2964751504 hasRelatedWork W2117383692 @default.
- W2964751504 hasRelatedWork W2129911618 @default.
- W2964751504 hasRelatedWork W2160580264 @default.
- W2964751504 hasRelatedWork W2357593811 @default.
- W2964751504 hasRelatedWork W2433041247 @default.
- W2964751504 hasRelatedWork W2464349748 @default.
- W2964751504 hasRelatedWork W2547327959 @default.
- W2964751504 hasRelatedWork W2585522755 @default.
- W2964751504 hasRelatedWork W2591546050 @default.
- W2964751504 hasRelatedWork W2893662764 @default.
- W2964751504 hasRelatedWork W2911514212 @default.
- W2964751504 hasRelatedWork W2998914929 @default.
- W2964751504 hasRelatedWork W3002396220 @default.
- W2964751504 hasRelatedWork W3090877066 @default.
- W2964751504 hasRelatedWork W3125183258 @default.
- W2964751504 hasRelatedWork W3203622869 @default.
- W2964751504 isParatext "false" @default.
- W2964751504 isRetracted "false" @default.
- W2964751504 magId "2964751504" @default.
- W2964751504 workType "article" @default.