Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964768178> ?p ?o ?g. }
- W2964768178 endingPage "105891" @default.
- W2964768178 startingPage "105891" @default.
- W2964768178 abstract "Honing processes provide a crosshatch pattern that allows oil flow, for example in combustion engine cylinders. This paper provides an adaptive neural network model for predicting roughness as a function of process parameters. Input variables are three parameters from the Abbott-Firestone curve, Rk, Rpk and Rvk. Output parameters are grain size, density of abrasive, pressure, linear speed and tangential speed. The model consists of applying a direct and an indirect model consecutively, with one convergence parameter and one error parameter. The indirect model has one network with 48 neurons and the direct model has three networks having 25, 9 and 5 neurons respectively. The adaptive one allows selecting discrete values for some variables like grain size or density." @default.
- W2964768178 created "2019-08-13" @default.
- W2964768178 creator A5014819696 @default.
- W2964768178 creator A5064717841 @default.
- W2964768178 creator A5081229314 @default.
- W2964768178 date "2020-01-01" @default.
- W2964768178 modified "2023-09-26" @default.
- W2964768178 title "Adaptive indirect neural network model for roughness in honing processes" @default.
- W2964768178 cites W1593687373 @default.
- W2964768178 cites W1811798330 @default.
- W2964768178 cites W1977230515 @default.
- W2964768178 cites W1979533081 @default.
- W2964768178 cites W1979789107 @default.
- W2964768178 cites W1983476744 @default.
- W2964768178 cites W1986377708 @default.
- W2964768178 cites W1994485526 @default.
- W2964768178 cites W2012264481 @default.
- W2964768178 cites W2033613435 @default.
- W2964768178 cites W2043544445 @default.
- W2964768178 cites W2044235143 @default.
- W2964768178 cites W2044847972 @default.
- W2964768178 cites W2060908334 @default.
- W2964768178 cites W2090315645 @default.
- W2964768178 cites W2094150090 @default.
- W2964768178 cites W210520966 @default.
- W2964768178 cites W2118766245 @default.
- W2964768178 cites W2136287490 @default.
- W2964768178 cites W226566298 @default.
- W2964768178 cites W2553976574 @default.
- W2964768178 cites W2556181162 @default.
- W2964768178 cites W2681460984 @default.
- W2964768178 cites W2739069001 @default.
- W2964768178 cites W2750870413 @default.
- W2964768178 cites W4243755433 @default.
- W2964768178 doi "https://doi.org/10.1016/j.triboint.2019.105891" @default.
- W2964768178 hasPublicationYear "2020" @default.
- W2964768178 type Work @default.
- W2964768178 sameAs 2964768178 @default.
- W2964768178 citedByCount "11" @default.
- W2964768178 countsByYear W29647681782020 @default.
- W2964768178 countsByYear W29647681782021 @default.
- W2964768178 countsByYear W29647681782022 @default.
- W2964768178 countsByYear W29647681782023 @default.
- W2964768178 crossrefType "journal-article" @default.
- W2964768178 hasAuthorship W2964768178A5014819696 @default.
- W2964768178 hasAuthorship W2964768178A5064717841 @default.
- W2964768178 hasAuthorship W2964768178A5081229314 @default.
- W2964768178 hasBestOaLocation W29647681782 @default.
- W2964768178 hasConcept C107365816 @default.
- W2964768178 hasConcept C121332964 @default.
- W2964768178 hasConcept C127413603 @default.
- W2964768178 hasConcept C154945302 @default.
- W2964768178 hasConcept C159985019 @default.
- W2964768178 hasConcept C162324750 @default.
- W2964768178 hasConcept C186060115 @default.
- W2964768178 hasConcept C192562407 @default.
- W2964768178 hasConcept C2775924081 @default.
- W2964768178 hasConcept C2776715399 @default.
- W2964768178 hasConcept C2777303404 @default.
- W2964768178 hasConcept C28826006 @default.
- W2964768178 hasConcept C33923547 @default.
- W2964768178 hasConcept C41008148 @default.
- W2964768178 hasConcept C47446073 @default.
- W2964768178 hasConcept C50522688 @default.
- W2964768178 hasConcept C50644808 @default.
- W2964768178 hasConcept C57879066 @default.
- W2964768178 hasConcept C71039073 @default.
- W2964768178 hasConcept C78519656 @default.
- W2964768178 hasConcept C86803240 @default.
- W2964768178 hasConceptScore W2964768178C107365816 @default.
- W2964768178 hasConceptScore W2964768178C121332964 @default.
- W2964768178 hasConceptScore W2964768178C127413603 @default.
- W2964768178 hasConceptScore W2964768178C154945302 @default.
- W2964768178 hasConceptScore W2964768178C159985019 @default.
- W2964768178 hasConceptScore W2964768178C162324750 @default.
- W2964768178 hasConceptScore W2964768178C186060115 @default.
- W2964768178 hasConceptScore W2964768178C192562407 @default.
- W2964768178 hasConceptScore W2964768178C2775924081 @default.
- W2964768178 hasConceptScore W2964768178C2776715399 @default.
- W2964768178 hasConceptScore W2964768178C2777303404 @default.
- W2964768178 hasConceptScore W2964768178C28826006 @default.
- W2964768178 hasConceptScore W2964768178C33923547 @default.
- W2964768178 hasConceptScore W2964768178C41008148 @default.
- W2964768178 hasConceptScore W2964768178C47446073 @default.
- W2964768178 hasConceptScore W2964768178C50522688 @default.
- W2964768178 hasConceptScore W2964768178C50644808 @default.
- W2964768178 hasConceptScore W2964768178C57879066 @default.
- W2964768178 hasConceptScore W2964768178C71039073 @default.
- W2964768178 hasConceptScore W2964768178C78519656 @default.
- W2964768178 hasConceptScore W2964768178C86803240 @default.
- W2964768178 hasFunder F4320322930 @default.
- W2964768178 hasLocation W29647681781 @default.
- W2964768178 hasLocation W29647681782 @default.
- W2964768178 hasOpenAccess W2964768178 @default.
- W2964768178 hasPrimaryLocation W29647681781 @default.
- W2964768178 hasRelatedWork W1984532048 @default.
- W2964768178 hasRelatedWork W2184494293 @default.
- W2964768178 hasRelatedWork W2327336800 @default.