Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964774312> ?p ?o ?g. }
- W2964774312 abstract "Continued fraction expansions and Hankel determinants of automatic sequences are extensively studied during the last two decades. These studies found applications in number theory in evaluating irrationality exponents. The present paper is motivated by the converse problem: to study continued fractions of which the elements form an automatic sequence. We consider two such continued fractions defined by the Thue-Morse and period-doubling sequences respectively, and prove that they are congruent to algebraic series in $mathbb{Z}[[x]]$ modulo $4$. Consequently, the sequences of the coefficients of the power series expansions of the two continued fractions modulo $4$ are $2$-automatic. Our approach is to first guess the explicit formulas of certain subsequences of $(P_n(x))$ and $(Q_n(x))$, where $P_n(x)/Q_n(x)$ is the canonical representation of the truncated continued fractions, then prove these formulas by an intricate induction involving eight subsequences while exploiting the relations between these subsequences." @default.
- W2964774312 created "2019-08-13" @default.
- W2964774312 creator A5051261266 @default.
- W2964774312 creator A5071407652 @default.
- W2964774312 date "2019-08-06" @default.
- W2964774312 modified "2023-09-25" @default.
- W2964774312 title "On the automaticity of sequences defined by continued fractions" @default.
- W2964774312 cites W1504035215 @default.
- W2964774312 cites W1524178053 @default.
- W2964774312 cites W1574079735 @default.
- W2964774312 cites W1977456964 @default.
- W2964774312 cites W1987403148 @default.
- W2964774312 cites W2005421362 @default.
- W2964774312 cites W2014724230 @default.
- W2964774312 cites W2023247992 @default.
- W2964774312 cites W2047890047 @default.
- W2964774312 cites W2061238919 @default.
- W2964774312 cites W2069728096 @default.
- W2964774312 cites W2083360431 @default.
- W2964774312 cites W2210915795 @default.
- W2964774312 cites W2324340709 @default.
- W2964774312 cites W2325835288 @default.
- W2964774312 cites W2556531671 @default.
- W2964774312 cites W2583175817 @default.
- W2964774312 cites W2962754232 @default.
- W2964774312 cites W2962801931 @default.
- W2964774312 cites W2963272800 @default.
- W2964774312 cites W2963632510 @default.
- W2964774312 cites W2963756227 @default.
- W2964774312 cites W2964031264 @default.
- W2964774312 cites W3104838968 @default.
- W2964774312 doi "https://doi.org/10.48550/arxiv.1908.02384" @default.
- W2964774312 hasPublicationYear "2019" @default.
- W2964774312 type Work @default.
- W2964774312 sameAs 2964774312 @default.
- W2964774312 citedByCount "3" @default.
- W2964774312 countsByYear W29647743122020 @default.
- W2964774312 countsByYear W29647743122022 @default.
- W2964774312 crossrefType "posted-content" @default.
- W2964774312 hasAuthorship W2964774312A5051261266 @default.
- W2964774312 hasAuthorship W2964774312A5071407652 @default.
- W2964774312 hasBestOaLocation W29647743121 @default.
- W2964774312 hasConcept C114614502 @default.
- W2964774312 hasConcept C118615104 @default.
- W2964774312 hasConcept C134306372 @default.
- W2964774312 hasConcept C136119220 @default.
- W2964774312 hasConcept C143724316 @default.
- W2964774312 hasConcept C149629883 @default.
- W2964774312 hasConcept C151730666 @default.
- W2964774312 hasConcept C169760540 @default.
- W2964774312 hasConcept C169900460 @default.
- W2964774312 hasConcept C178790620 @default.
- W2964774312 hasConcept C184992742 @default.
- W2964774312 hasConcept C185592680 @default.
- W2964774312 hasConcept C20080352 @default.
- W2964774312 hasConcept C202444582 @default.
- W2964774312 hasConcept C2524010 @default.
- W2964774312 hasConcept C2776809875 @default.
- W2964774312 hasConcept C2778112365 @default.
- W2964774312 hasConcept C33002781 @default.
- W2964774312 hasConcept C33923547 @default.
- W2964774312 hasConcept C39613435 @default.
- W2964774312 hasConcept C54355233 @default.
- W2964774312 hasConcept C54732982 @default.
- W2964774312 hasConcept C73905626 @default.
- W2964774312 hasConcept C86803240 @default.
- W2964774312 hasConcept C9376300 @default.
- W2964774312 hasConcept C94375191 @default.
- W2964774312 hasConceptScore W2964774312C114614502 @default.
- W2964774312 hasConceptScore W2964774312C118615104 @default.
- W2964774312 hasConceptScore W2964774312C134306372 @default.
- W2964774312 hasConceptScore W2964774312C136119220 @default.
- W2964774312 hasConceptScore W2964774312C143724316 @default.
- W2964774312 hasConceptScore W2964774312C149629883 @default.
- W2964774312 hasConceptScore W2964774312C151730666 @default.
- W2964774312 hasConceptScore W2964774312C169760540 @default.
- W2964774312 hasConceptScore W2964774312C169900460 @default.
- W2964774312 hasConceptScore W2964774312C178790620 @default.
- W2964774312 hasConceptScore W2964774312C184992742 @default.
- W2964774312 hasConceptScore W2964774312C185592680 @default.
- W2964774312 hasConceptScore W2964774312C20080352 @default.
- W2964774312 hasConceptScore W2964774312C202444582 @default.
- W2964774312 hasConceptScore W2964774312C2524010 @default.
- W2964774312 hasConceptScore W2964774312C2776809875 @default.
- W2964774312 hasConceptScore W2964774312C2778112365 @default.
- W2964774312 hasConceptScore W2964774312C33002781 @default.
- W2964774312 hasConceptScore W2964774312C33923547 @default.
- W2964774312 hasConceptScore W2964774312C39613435 @default.
- W2964774312 hasConceptScore W2964774312C54355233 @default.
- W2964774312 hasConceptScore W2964774312C54732982 @default.
- W2964774312 hasConceptScore W2964774312C73905626 @default.
- W2964774312 hasConceptScore W2964774312C86803240 @default.
- W2964774312 hasConceptScore W2964774312C9376300 @default.
- W2964774312 hasConceptScore W2964774312C94375191 @default.
- W2964774312 hasLocation W29647743121 @default.
- W2964774312 hasOpenAccess W2964774312 @default.
- W2964774312 hasPrimaryLocation W29647743121 @default.
- W2964774312 hasRelatedWork W2199618484 @default.
- W2964774312 hasRelatedWork W2506780121 @default.
- W2964774312 hasRelatedWork W2735135343 @default.