Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964784810> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2964784810 abstract "Feature selection is an important method of data dimensionality reduction widely used in machine learning. In this framework, the sparse representation based feature selection methods are very attractive. This is because of the nature of these methods which try to represent a data with as less as possible non-zero coefficients. In deep neural networks, a very high dimensional feature space is usually existed. In such a situation, one can take advantages of the feature selection approaches into account. In this paper, first, three sparse feature selection methods are compared. The Sparse Group Lasso (SGL) algorithm is one of the adopted approaches. This method is theoretically very well-organized and leads to good results for man-made features. The most important property of this method is that it highly induces the sparsity to the data. A main step of the SGL method is the features grouping step. In this paper, a k-means clustering based method is applied for grouping of the features. Our experimental results show that this sparse representation based method leads to very successful results in deep neural networks." @default.
- W2964784810 created "2019-08-13" @default.
- W2964784810 creator A5044401777 @default.
- W2964784810 creator A5051482973 @default.
- W2964784810 date "2019-04-01" @default.
- W2964784810 modified "2023-09-24" @default.
- W2964784810 title "Deep Feature Selection using an Enhanced Sparse Group Lasso Algorithm" @default.
- W2964784810 cites W1998396170 @default.
- W2964784810 cites W2007339694 @default.
- W2964784810 cites W2043080228 @default.
- W2964784810 cites W2116742884 @default.
- W2964784810 cites W2135046866 @default.
- W2964784810 cites W2147526465 @default.
- W2964784810 cites W2339611261 @default.
- W2964784810 cites W2460144244 @default.
- W2964784810 doi "https://doi.org/10.1109/iraniancee.2019.8786386" @default.
- W2964784810 hasPublicationYear "2019" @default.
- W2964784810 type Work @default.
- W2964784810 sameAs 2964784810 @default.
- W2964784810 citedByCount "8" @default.
- W2964784810 countsByYear W29647848102020 @default.
- W2964784810 countsByYear W29647848102021 @default.
- W2964784810 countsByYear W29647848102022 @default.
- W2964784810 crossrefType "proceedings-article" @default.
- W2964784810 hasAuthorship W2964784810A5044401777 @default.
- W2964784810 hasAuthorship W2964784810A5051482973 @default.
- W2964784810 hasConcept C111030470 @default.
- W2964784810 hasConcept C111472728 @default.
- W2964784810 hasConcept C11413529 @default.
- W2964784810 hasConcept C119857082 @default.
- W2964784810 hasConcept C124066611 @default.
- W2964784810 hasConcept C136764020 @default.
- W2964784810 hasConcept C138885662 @default.
- W2964784810 hasConcept C148483581 @default.
- W2964784810 hasConcept C153180895 @default.
- W2964784810 hasConcept C154945302 @default.
- W2964784810 hasConcept C17744445 @default.
- W2964784810 hasConcept C189950617 @default.
- W2964784810 hasConcept C199539241 @default.
- W2964784810 hasConcept C2776359362 @default.
- W2964784810 hasConcept C2776401178 @default.
- W2964784810 hasConcept C37616216 @default.
- W2964784810 hasConcept C41008148 @default.
- W2964784810 hasConcept C41895202 @default.
- W2964784810 hasConcept C50644808 @default.
- W2964784810 hasConcept C70518039 @default.
- W2964784810 hasConcept C73555534 @default.
- W2964784810 hasConcept C81917197 @default.
- W2964784810 hasConcept C94625758 @default.
- W2964784810 hasConceptScore W2964784810C111030470 @default.
- W2964784810 hasConceptScore W2964784810C111472728 @default.
- W2964784810 hasConceptScore W2964784810C11413529 @default.
- W2964784810 hasConceptScore W2964784810C119857082 @default.
- W2964784810 hasConceptScore W2964784810C124066611 @default.
- W2964784810 hasConceptScore W2964784810C136764020 @default.
- W2964784810 hasConceptScore W2964784810C138885662 @default.
- W2964784810 hasConceptScore W2964784810C148483581 @default.
- W2964784810 hasConceptScore W2964784810C153180895 @default.
- W2964784810 hasConceptScore W2964784810C154945302 @default.
- W2964784810 hasConceptScore W2964784810C17744445 @default.
- W2964784810 hasConceptScore W2964784810C189950617 @default.
- W2964784810 hasConceptScore W2964784810C199539241 @default.
- W2964784810 hasConceptScore W2964784810C2776359362 @default.
- W2964784810 hasConceptScore W2964784810C2776401178 @default.
- W2964784810 hasConceptScore W2964784810C37616216 @default.
- W2964784810 hasConceptScore W2964784810C41008148 @default.
- W2964784810 hasConceptScore W2964784810C41895202 @default.
- W2964784810 hasConceptScore W2964784810C50644808 @default.
- W2964784810 hasConceptScore W2964784810C70518039 @default.
- W2964784810 hasConceptScore W2964784810C73555534 @default.
- W2964784810 hasConceptScore W2964784810C81917197 @default.
- W2964784810 hasConceptScore W2964784810C94625758 @default.
- W2964784810 hasLocation W29647848101 @default.
- W2964784810 hasOpenAccess W2964784810 @default.
- W2964784810 hasPrimaryLocation W29647848101 @default.
- W2964784810 hasRelatedWork W1586627725 @default.
- W2964784810 hasRelatedWork W2001463404 @default.
- W2964784810 hasRelatedWork W2039944430 @default.
- W2964784810 hasRelatedWork W2082518491 @default.
- W2964784810 hasRelatedWork W2369273316 @default.
- W2964784810 hasRelatedWork W2541438111 @default.
- W2964784810 hasRelatedWork W2799291336 @default.
- W2964784810 hasRelatedWork W4225307033 @default.
- W2964784810 hasRelatedWork W4253153537 @default.
- W2964784810 hasRelatedWork W2510416153 @default.
- W2964784810 isParatext "false" @default.
- W2964784810 isRetracted "false" @default.
- W2964784810 magId "2964784810" @default.
- W2964784810 workType "article" @default.