Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964844561> ?p ?o ?g. }
- W2964844561 endingPage "1513" @default.
- W2964844561 startingPage "1491" @default.
- W2964844561 abstract "SUMMARY H–κ stacking is used routinely to infer crustal thickness and bulk-crustal VP/VS ratio from teleseismic receiver functions. The method assumes that the largest amplitude P-to-S conversions beneath the seismograph station are generated at the Moho. This is reasonable where the crust is simple and the Moho marks a relatively abrupt transition from crust to mantle, but not if the crust–mantle transition is gradational and/or complex intracrustal structure exists. We demonstrate via synthetic seismogram analysis that H–κ results can be strongly dependent on the choice of stacking parameters (the relative weights assigned to the Moho P-to-S conversion and its subsequent reverberations, the choice of linear or phase-weighted stacking, input crustal P-wave velocity) and associated data parameters (receiver function frequency content and the sample of receiver functions analysed). To address this parameter sensitivity issue, we develop an H–κ approach in which cluster analysis selects a final solution from 1000 individual H–κ results, each calculated using randomly selected receiver functions, and H–κ input parameters. 10 quality control criteria that variously assess the final numerical result, the receiver function data set, and the extent to which the results are tightly clustered, are used to assess the reliability of H–κ stacking at a station. Analysis of synthetic data sets indicates H–κ works reliably when the Moho is sharp and intracrustal structure is lacking but is less successful when the Moho is gradational. Limiting the frequency content of receiver functions can improve the H–κ solutions in such settings, provided intracrustal structure is simple. In cratonic Canada, India and Australia, H–κ solutions generally cluster tightly, indicative of simple crust and a sharp Moho. In contrast, on the Ethiopian plateau, where Palaeogene flood-basalts overlie marine sediments, H–κ results are unstable and erroneous. For stations that lie on thinner flood-basalt outcrops, and/or in regions where Blue Nile river incision has eroded through to the sediments below, limiting the receiver function frequency content to longer periods improves the H–κ solution and reveals a 6–10 km gradational Moho, readily interpreted as a lower crustal intrusion layer at the base of a mafic (VP/VS = 1.77–1.87) crust. Moving off the flood-basalt province, H–κ results are reliable and the crust is thinner and more felsic (VP/VS = 1.70–1.77), indicating the lower crustal intrusion layer is confined to the region covered by flood-basaltic volcanism. Analysis of data from other tectonically complex settings (e.g. Japan, Cyprus) shows H–κ stacking results should be treated cautiously. Only in regions of relatively simple crust can H–κ stacking analysis be considered truly reliable." @default.
- W2964844561 created "2019-08-13" @default.
- W2964844561 creator A5005765081 @default.
- W2964844561 creator A5040397320 @default.
- W2964844561 creator A5042998007 @default.
- W2964844561 creator A5080374258 @default.
- W2964844561 date "2019-08-05" @default.
- W2964844561 modified "2023-09-30" @default.
- W2964844561 title "A reappraisal of the H–κ stacking technique: implications for global crustal structure" @default.
- W2964844561 cites W1548270632 @default.
- W2964844561 cites W1570703956 @default.
- W2964844561 cites W1609892959 @default.
- W2964844561 cites W1660410253 @default.
- W2964844561 cites W1968460219 @default.
- W2964844561 cites W1975152892 @default.
- W2964844561 cites W1985707168 @default.
- W2964844561 cites W1990149377 @default.
- W2964844561 cites W1991472340 @default.
- W2964844561 cites W1994989148 @default.
- W2964844561 cites W1996412456 @default.
- W2964844561 cites W2003586202 @default.
- W2964844561 cites W2022427442 @default.
- W2964844561 cites W2031349833 @default.
- W2964844561 cites W2036816007 @default.
- W2964844561 cites W2047559336 @default.
- W2964844561 cites W2059573685 @default.
- W2964844561 cites W2063336681 @default.
- W2964844561 cites W2080896991 @default.
- W2964844561 cites W2083266769 @default.
- W2964844561 cites W2085487226 @default.
- W2964844561 cites W2085516284 @default.
- W2964844561 cites W2093813602 @default.
- W2964844561 cites W2096728475 @default.
- W2964844561 cites W2102265562 @default.
- W2964844561 cites W2103068583 @default.
- W2964844561 cites W2104606960 @default.
- W2964844561 cites W2106470520 @default.
- W2964844561 cites W2110525812 @default.
- W2964844561 cites W2115443705 @default.
- W2964844561 cites W2120673984 @default.
- W2964844561 cites W2129616465 @default.
- W2964844561 cites W2132509829 @default.
- W2964844561 cites W2143424981 @default.
- W2964844561 cites W2156253249 @default.
- W2964844561 cites W2158670399 @default.
- W2964844561 cites W2158711593 @default.
- W2964844561 cites W2169627376 @default.
- W2964844561 cites W2172000677 @default.
- W2964844561 cites W2331118188 @default.
- W2964844561 cites W2463654099 @default.
- W2964844561 cites W2519360852 @default.
- W2964844561 cites W2529271939 @default.
- W2964844561 cites W2559892752 @default.
- W2964844561 cites W2586667620 @default.
- W2964844561 cites W2621263361 @default.
- W2964844561 cites W2770282689 @default.
- W2964844561 cites W2891382764 @default.
- W2964844561 cites W4232199842 @default.
- W2964844561 doi "https://doi.org/10.1093/gji/ggz364" @default.
- W2964844561 hasPublicationYear "2019" @default.
- W2964844561 type Work @default.
- W2964844561 sameAs 2964844561 @default.
- W2964844561 citedByCount "28" @default.
- W2964844561 countsByYear W29648445612020 @default.
- W2964844561 countsByYear W29648445612021 @default.
- W2964844561 countsByYear W29648445612022 @default.
- W2964844561 countsByYear W29648445612023 @default.
- W2964844561 crossrefType "journal-article" @default.
- W2964844561 hasAuthorship W2964844561A5005765081 @default.
- W2964844561 hasAuthorship W2964844561A5040397320 @default.
- W2964844561 hasAuthorship W2964844561A5042998007 @default.
- W2964844561 hasAuthorship W2964844561A5080374258 @default.
- W2964844561 hasBestOaLocation W29648445612 @default.
- W2964844561 hasConcept C119217923 @default.
- W2964844561 hasConcept C121332964 @default.
- W2964844561 hasConcept C127313418 @default.
- W2964844561 hasConcept C148447573 @default.
- W2964844561 hasConcept C165205528 @default.
- W2964844561 hasConcept C16942324 @default.
- W2964844561 hasConcept C169744125 @default.
- W2964844561 hasConcept C177918212 @default.
- W2964844561 hasConcept C2776698055 @default.
- W2964844561 hasConcept C33347731 @default.
- W2964844561 hasConcept C46141821 @default.
- W2964844561 hasConcept C62520636 @default.
- W2964844561 hasConcept C67236022 @default.
- W2964844561 hasConcept C77928131 @default.
- W2964844561 hasConcept C8058405 @default.
- W2964844561 hasConceptScore W2964844561C119217923 @default.
- W2964844561 hasConceptScore W2964844561C121332964 @default.
- W2964844561 hasConceptScore W2964844561C127313418 @default.
- W2964844561 hasConceptScore W2964844561C148447573 @default.
- W2964844561 hasConceptScore W2964844561C165205528 @default.
- W2964844561 hasConceptScore W2964844561C16942324 @default.
- W2964844561 hasConceptScore W2964844561C169744125 @default.
- W2964844561 hasConceptScore W2964844561C177918212 @default.
- W2964844561 hasConceptScore W2964844561C2776698055 @default.
- W2964844561 hasConceptScore W2964844561C33347731 @default.