Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964873350> ?p ?o ?g. }
- W2964873350 endingPage "108292" @default.
- W2964873350 startingPage "108292" @default.
- W2964873350 abstract "The Cauchy dual subnormality problem asks whether the Cauchy dual operator T′:=T(T⁎T)−1 of a 2-isometry T is subnormal. In the present paper we show that the problem has a negative solution. The first counterexample depends heavily on a reconstruction theorem stating that if T is a 2-isometric weighted shift on a rooted directed tree with nonzero weights that satisfies the perturbed kernel condition, then T′ is subnormal if and only if T satisfies the (unperturbed) kernel condition. The second counterexample arises from a 2-isometric adjacency operator of a locally finite rooted directed tree again by thorough investigations of positive solutions of the Cauchy dual subnormality problem in this context. We prove that if T is a 2-isometry satisfying the kernel condition or a quasi-Brownian isometry, then T′ is subnormal. We construct a 2-isometric adjacency operator T of a rooted directed tree such that T does not satisfy the kernel condition, T is not a quasi-Brownian isometry and T′ is subnormal." @default.
- W2964873350 created "2019-08-13" @default.
- W2964873350 creator A5003045384 @default.
- W2964873350 creator A5066109793 @default.
- W2964873350 creator A5077549356 @default.
- W2964873350 creator A5078700724 @default.
- W2964873350 date "2019-12-01" @default.
- W2964873350 modified "2023-09-23" @default.
- W2964873350 title "A solution to the Cauchy dual subnormality problem for 2-isometries" @default.
- W2964873350 cites W1536574727 @default.
- W2964873350 cites W1579606404 @default.
- W2964873350 cites W1601238238 @default.
- W2964873350 cites W1976195616 @default.
- W2964873350 cites W1982905443 @default.
- W2964873350 cites W1994439535 @default.
- W2964873350 cites W1999571083 @default.
- W2964873350 cites W2006555769 @default.
- W2964873350 cites W2009553578 @default.
- W2964873350 cites W2017027271 @default.
- W2964873350 cites W2022338173 @default.
- W2964873350 cites W2032179511 @default.
- W2964873350 cites W2032720725 @default.
- W2964873350 cites W2033041908 @default.
- W2964873350 cites W2038838066 @default.
- W2964873350 cites W2057787478 @default.
- W2964873350 cites W2073000712 @default.
- W2964873350 cites W2081539458 @default.
- W2964873350 cites W2121488933 @default.
- W2964873350 cites W2121572968 @default.
- W2964873350 cites W2128245760 @default.
- W2964873350 cites W2326099995 @default.
- W2964873350 cites W2506155593 @default.
- W2964873350 cites W2507368124 @default.
- W2964873350 cites W2510889004 @default.
- W2964873350 cites W2950558793 @default.
- W2964873350 cites W2963202263 @default.
- W2964873350 cites W2963651312 @default.
- W2964873350 cites W2964034135 @default.
- W2964873350 cites W2964274902 @default.
- W2964873350 cites W3099017641 @default.
- W2964873350 cites W3122724777 @default.
- W2964873350 cites W4247035311 @default.
- W2964873350 cites W4253408288 @default.
- W2964873350 cites W951428933 @default.
- W2964873350 doi "https://doi.org/10.1016/j.jfa.2019.108292" @default.
- W2964873350 hasPublicationYear "2019" @default.
- W2964873350 type Work @default.
- W2964873350 sameAs 2964873350 @default.
- W2964873350 citedByCount "21" @default.
- W2964873350 countsByYear W29648733502018 @default.
- W2964873350 countsByYear W29648733502019 @default.
- W2964873350 countsByYear W29648733502020 @default.
- W2964873350 countsByYear W29648733502021 @default.
- W2964873350 countsByYear W29648733502022 @default.
- W2964873350 countsByYear W29648733502023 @default.
- W2964873350 crossrefType "journal-article" @default.
- W2964873350 hasAuthorship W2964873350A5003045384 @default.
- W2964873350 hasAuthorship W2964873350A5066109793 @default.
- W2964873350 hasAuthorship W2964873350A5077549356 @default.
- W2964873350 hasAuthorship W2964873350A5078700724 @default.
- W2964873350 hasBestOaLocation W29648733502 @default.
- W2964873350 hasConcept C104317684 @default.
- W2964873350 hasConcept C113174947 @default.
- W2964873350 hasConcept C114614502 @default.
- W2964873350 hasConcept C118615104 @default.
- W2964873350 hasConcept C134306372 @default.
- W2964873350 hasConcept C151730666 @default.
- W2964873350 hasConcept C153635880 @default.
- W2964873350 hasConcept C158448853 @default.
- W2964873350 hasConcept C162838799 @default.
- W2964873350 hasConcept C17020691 @default.
- W2964873350 hasConcept C185592680 @default.
- W2964873350 hasConcept C202444582 @default.
- W2964873350 hasConcept C26955809 @default.
- W2964873350 hasConcept C2779343474 @default.
- W2964873350 hasConcept C33923547 @default.
- W2964873350 hasConcept C49344536 @default.
- W2964873350 hasConcept C55493867 @default.
- W2964873350 hasConcept C74193536 @default.
- W2964873350 hasConcept C82457910 @default.
- W2964873350 hasConcept C86339819 @default.
- W2964873350 hasConcept C86803240 @default.
- W2964873350 hasConceptScore W2964873350C104317684 @default.
- W2964873350 hasConceptScore W2964873350C113174947 @default.
- W2964873350 hasConceptScore W2964873350C114614502 @default.
- W2964873350 hasConceptScore W2964873350C118615104 @default.
- W2964873350 hasConceptScore W2964873350C134306372 @default.
- W2964873350 hasConceptScore W2964873350C151730666 @default.
- W2964873350 hasConceptScore W2964873350C153635880 @default.
- W2964873350 hasConceptScore W2964873350C158448853 @default.
- W2964873350 hasConceptScore W2964873350C162838799 @default.
- W2964873350 hasConceptScore W2964873350C17020691 @default.
- W2964873350 hasConceptScore W2964873350C185592680 @default.
- W2964873350 hasConceptScore W2964873350C202444582 @default.
- W2964873350 hasConceptScore W2964873350C26955809 @default.
- W2964873350 hasConceptScore W2964873350C2779343474 @default.
- W2964873350 hasConceptScore W2964873350C33923547 @default.
- W2964873350 hasConceptScore W2964873350C49344536 @default.