Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964943600> ?p ?o ?g. }
- W2964943600 endingPage "3138" @default.
- W2964943600 startingPage "3129" @default.
- W2964943600 abstract "Abstract Linkage mapping is one of the most commonly used methods to identify genetic loci that determine a trait. However, the loci identified by linkage mapping may contain hundreds of candidate genes and require a time-consuming and labor-intensive fine mapping process to find the causal gene controlling the trait. With the availability of a rich assortment of genomic and functional genomic data, it is possible to develop a computational method to facilitate faster identification of causal genes. We developed QTG-Finder, a machine learning based algorithm to prioritize causal genes by ranking genes within a quantitative trait locus (QTL). Two predictive models were trained separately based on known causal genes in Arabidopsis and rice. An independent validation analysis showed that the models could recall about 64% of Arabidopsis and 79% of rice causal genes when the top 20% ranked genes were considered. The top 20% ranked genes can range from 10 to 100 genes, depending on the size of a QTL. The models can prioritize different types of traits though at different efficiency. We also identified several important features of causal genes including paralog copy number, being a transporter, being a transcription factor, and containing SNPs that cause premature stop codon. This work lays the foundation for systematically understanding characteristics of causal genes and establishes a pipeline to predict causal genes based on public data." @default.
- W2964943600 created "2019-08-13" @default.
- W2964943600 creator A5037437663 @default.
- W2964943600 creator A5071441776 @default.
- W2964943600 creator A5078310250 @default.
- W2964943600 date "2019-10-01" @default.
- W2964943600 modified "2023-10-11" @default.
- W2964943600 title "QTG-Finder: A Machine-Learning Based Algorithm To Prioritize Causal Genes of Quantitative Trait Loci in Arabidopsis and Rice" @default.
- W2964943600 cites W1542772707 @default.
- W2964943600 cites W1908556438 @default.
- W2964943600 cites W1971645723 @default.
- W2964943600 cites W1974116356 @default.
- W2964943600 cites W1976265248 @default.
- W2964943600 cites W1985870845 @default.
- W2964943600 cites W1988351368 @default.
- W2964943600 cites W2006738729 @default.
- W2964943600 cites W2009588715 @default.
- W2964943600 cites W2011025549 @default.
- W2964943600 cites W2018189081 @default.
- W2964943600 cites W2029387500 @default.
- W2964943600 cites W2033169664 @default.
- W2964943600 cites W2057443114 @default.
- W2964943600 cites W2064572097 @default.
- W2964943600 cites W2070448217 @default.
- W2964943600 cites W2072094636 @default.
- W2964943600 cites W2086764330 @default.
- W2964943600 cites W2094247015 @default.
- W2964943600 cites W2097532544 @default.
- W2964943600 cites W2099380157 @default.
- W2964943600 cites W2101291993 @default.
- W2964943600 cites W2106578986 @default.
- W2964943600 cites W2107714719 @default.
- W2964943600 cites W2113242816 @default.
- W2964943600 cites W2113629940 @default.
- W2964943600 cites W2114183473 @default.
- W2964943600 cites W2115669899 @default.
- W2964943600 cites W2117446594 @default.
- W2964943600 cites W2118225336 @default.
- W2964943600 cites W2125066647 @default.
- W2964943600 cites W2126015874 @default.
- W2964943600 cites W2131809153 @default.
- W2964943600 cites W2132563424 @default.
- W2964943600 cites W2133416256 @default.
- W2964943600 cites W2138920781 @default.
- W2964943600 cites W2139359390 @default.
- W2964943600 cites W2140952049 @default.
- W2964943600 cites W2143238378 @default.
- W2964943600 cites W2146707484 @default.
- W2964943600 cites W2147773878 @default.
- W2964943600 cites W2150396633 @default.
- W2964943600 cites W2150577353 @default.
- W2964943600 cites W2150646520 @default.
- W2964943600 cites W2153222781 @default.
- W2964943600 cites W2155055487 @default.
- W2964943600 cites W2158018108 @default.
- W2964943600 cites W2158927033 @default.
- W2964943600 cites W2160995259 @default.
- W2964943600 cites W2167852161 @default.
- W2964943600 cites W2286615160 @default.
- W2964943600 cites W2419574648 @default.
- W2964943600 cites W2474525766 @default.
- W2964943600 cites W2535426958 @default.
- W2964943600 cites W2558561667 @default.
- W2964943600 cites W2589515024 @default.
- W2964943600 cites W2595351638 @default.
- W2964943600 cites W2610801255 @default.
- W2964943600 cites W2728334067 @default.
- W2964943600 cites W2742600815 @default.
- W2964943600 cites W2782908004 @default.
- W2964943600 cites W2789833233 @default.
- W2964943600 cites W2902838295 @default.
- W2964943600 cites W2951582270 @default.
- W2964943600 cites W4239510810 @default.
- W2964943600 doi "https://doi.org/10.1534/g3.119.400319" @default.
- W2964943600 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6778793" @default.
- W2964943600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31358562" @default.
- W2964943600 hasPublicationYear "2019" @default.
- W2964943600 type Work @default.
- W2964943600 sameAs 2964943600 @default.
- W2964943600 citedByCount "17" @default.
- W2964943600 countsByYear W29649436002020 @default.
- W2964943600 countsByYear W29649436002021 @default.
- W2964943600 countsByYear W29649436002022 @default.
- W2964943600 countsByYear W29649436002023 @default.
- W2964943600 crossrefType "journal-article" @default.
- W2964943600 hasAuthorship W2964943600A5037437663 @default.
- W2964943600 hasAuthorship W2964943600A5071441776 @default.
- W2964943600 hasAuthorship W2964943600A5078310250 @default.
- W2964943600 hasBestOaLocation W29649436001 @default.
- W2964943600 hasConcept C104317684 @default.
- W2964943600 hasConcept C106934330 @default.
- W2964943600 hasConcept C116834253 @default.
- W2964943600 hasConcept C122735190 @default.
- W2964943600 hasConcept C142870003 @default.
- W2964943600 hasConcept C143065580 @default.
- W2964943600 hasConcept C199360897 @default.
- W2964943600 hasConcept C21249469 @default.
- W2964943600 hasConcept C2779491563 @default.