Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965077897> ?p ?o ?g. }
- W2965077897 abstract "Since the manual detection of electrographic seizures in continuous electroencephalogram (EEG) monitoring is very time-consuming and requires a trained expert, attempts to develop automatic seizure detection are diverse and ongoing. Machine learning approaches are intensely being applied to this problem due to their ability to classify seizure conditions from a large amount of data, and provide pre-screened results for neurologists. Several features, data transformations, and classifiers have been explored to analyze and classify seizures via EEG signals. In the literature, some jointly-applied features used in the classification may have shared similar contributions, making them redundant in the learning process. Therefore, this paper aims to comprehensively summarize feature descriptions and their interpretations in characterizing epileptic seizures using EEG signals, as well as to review classification performance metrics. To provide meaningful information of feature selection, we conducted an experiment to examine the quality of each feature independently. The Bayesian error and non-parametric probability distribution estimation were employed to determine the significance of the individual features. Moreover, a redundancy analysis using a correlation-based feature selection was applied. The results showed that the following features --variance, energy, nonlinear energy, and Shannon entropy computed on a raw EEG signal, as well as variance, energy, kurtosis, and line length calculated on wavelet coefficients-- were able to significantly capture the seizures. An improvement of 4.77--13.51% in the Bayesian error from the baseline was obtained." @default.
- W2965077897 created "2019-08-13" @default.
- W2965077897 creator A5033554751 @default.
- W2965077897 creator A5044405321 @default.
- W2965077897 creator A5089492833 @default.
- W2965077897 creator A5033564254 @default.
- W2965077897 date "2019-08-01" @default.
- W2965077897 modified "2023-09-27" @default.
- W2965077897 title "A review of feature extraction and performance evaluation in epileptic seizure detection using EEG" @default.
- W2965077897 cites W1495061682 @default.
- W2965077897 cites W1502050276 @default.
- W2965077897 cites W1538482441 @default.
- W2965077897 cites W1545302199 @default.
- W2965077897 cites W1556131344 @default.
- W2965077897 cites W1564947197 @default.
- W2965077897 cites W1705562686 @default.
- W2965077897 cites W1818768602 @default.
- W2965077897 cites W1862394037 @default.
- W2965077897 cites W1877153489 @default.
- W2965077897 cites W1973525977 @default.
- W2965077897 cites W1974991504 @default.
- W2965077897 cites W1979148805 @default.
- W2965077897 cites W1981211771 @default.
- W2965077897 cites W1984667514 @default.
- W2965077897 cites W1988841943 @default.
- W2965077897 cites W1994233698 @default.
- W2965077897 cites W1995875735 @default.
- W2965077897 cites W1996183177 @default.
- W2965077897 cites W2000943526 @default.
- W2965077897 cites W2005305683 @default.
- W2965077897 cites W2010112159 @default.
- W2965077897 cites W2011714246 @default.
- W2965077897 cites W2014683958 @default.
- W2965077897 cites W2016054699 @default.
- W2965077897 cites W2021970732 @default.
- W2965077897 cites W2024011138 @default.
- W2965077897 cites W2027927824 @default.
- W2965077897 cites W2030925257 @default.
- W2965077897 cites W2032121576 @default.
- W2965077897 cites W2035987281 @default.
- W2965077897 cites W2042323927 @default.
- W2965077897 cites W2043596210 @default.
- W2965077897 cites W2048124453 @default.
- W2965077897 cites W2052106598 @default.
- W2965077897 cites W2052437034 @default.
- W2965077897 cites W2052466231 @default.
- W2965077897 cites W2053744708 @default.
- W2965077897 cites W2077204677 @default.
- W2965077897 cites W2078760541 @default.
- W2965077897 cites W2080966422 @default.
- W2965077897 cites W2105622546 @default.
- W2965077897 cites W2111072639 @default.
- W2965077897 cites W2118020555 @default.
- W2965077897 cites W2119269525 @default.
- W2965077897 cites W2119705365 @default.
- W2965077897 cites W2131423920 @default.
- W2965077897 cites W2132240828 @default.
- W2965077897 cites W2134050473 @default.
- W2965077897 cites W2135346934 @default.
- W2965077897 cites W2138190513 @default.
- W2965077897 cites W2143776609 @default.
- W2965077897 cites W2156571267 @default.
- W2965077897 cites W2164104048 @default.
- W2965077897 cites W2170498245 @default.
- W2965077897 cites W2288333483 @default.
- W2965077897 cites W2322045482 @default.
- W2965077897 cites W2341760625 @default.
- W2965077897 cites W2461134574 @default.
- W2965077897 cites W2519140045 @default.
- W2965077897 cites W2571679688 @default.
- W2965077897 cites W2582398088 @default.
- W2965077897 cites W2586456943 @default.
- W2965077897 cites W2588128256 @default.
- W2965077897 cites W2591292252 @default.
- W2965077897 cites W2592931460 @default.
- W2965077897 cites W2608948620 @default.
- W2965077897 cites W2679522991 @default.
- W2965077897 cites W2750384459 @default.
- W2965077897 cites W2750977128 @default.
- W2965077897 cites W2783463976 @default.
- W2965077897 cites W2790950056 @default.
- W2965077897 cites W2793694534 @default.
- W2965077897 cites W2793847758 @default.
- W2965077897 cites W2797694788 @default.
- W2965077897 cites W2889617221 @default.
- W2965077897 cites W397076878 @default.
- W2965077897 cites W59945300 @default.
- W2965077897 cites W2362339555 @default.
- W2965077897 hasPublicationYear "2019" @default.
- W2965077897 type Work @default.
- W2965077897 sameAs 2965077897 @default.
- W2965077897 citedByCount "0" @default.
- W2965077897 crossrefType "posted-content" @default.
- W2965077897 hasAuthorship W2965077897A5033554751 @default.
- W2965077897 hasAuthorship W2965077897A5033564254 @default.
- W2965077897 hasAuthorship W2965077897A5044405321 @default.
- W2965077897 hasAuthorship W2965077897A5089492833 @default.
- W2965077897 hasConcept C105795698 @default.
- W2965077897 hasConcept C107673813 @default.
- W2965077897 hasConcept C117251300 @default.