Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965098473> ?p ?o ?g. }
- W2965098473 endingPage "105237" @default.
- W2965098473 startingPage "105237" @default.
- W2965098473 abstract "Thousands or even million of pixels can be contained in a single Slope Unit. Hence, each covariate used in spatial predictive models is characterized by a distribution of values for each Slope Unit. Here, we model the whole covariates' distribution within Slope Units for landslide susceptibility purposes. This is done by finely dissecting each covariate into quantiles and then modeling the susceptibility via a LASSO penalized Binary Logistic Regression. We choose a LASSO penalization because the common Stepwise procedure is not selective enough to shrink a large number of covariates to an interpretable subset (which we also demonstrate here). LASSO mostly selects 6 covariates out of 372 to explain the spatial distribution of shallow landslides in the Upper Badia valley, Italian Alps. This allows us to verify that the selection does not include any quantile close to the median hence, nor to the mean. The latter is the common representation of the covariates' distribution within Slope Units, which we also test and report in the supplements. Overall, we suggest to always investigate the whole distribution because the mean may not be the most informative nor the most performing way to generate Slope-Unit-based susceptibility models. In this general context, we generate our landslide inventory by combining semi-automated (OBIA) and manual mapping procedures. Our inventory, quantile covariates' representation and LASSO penalization produce excellent performances and interpretable relations between covariates and landslides." @default.
- W2965098473 created "2019-08-13" @default.
- W2965098473 creator A5003112805 @default.
- W2965098473 creator A5037423371 @default.
- W2965098473 creator A5058353143 @default.
- W2965098473 creator A5077186504 @default.
- W2965098473 date "2019-10-01" @default.
- W2965098473 modified "2023-09-30" @default.
- W2965098473 title "Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment" @default.
- W2965098473 cites W1656904613 @default.
- W2965098473 cites W1979408254 @default.
- W2965098473 cites W1981646498 @default.
- W2965098473 cites W1983513512 @default.
- W2965098473 cites W1991384931 @default.
- W2965098473 cites W1998025025 @default.
- W2965098473 cites W2005802434 @default.
- W2965098473 cites W2015400359 @default.
- W2965098473 cites W2016167483 @default.
- W2965098473 cites W2017363733 @default.
- W2965098473 cites W2021675301 @default.
- W2965098473 cites W2021765639 @default.
- W2965098473 cites W2024976610 @default.
- W2965098473 cites W2026389963 @default.
- W2965098473 cites W2026682924 @default.
- W2965098473 cites W2030664888 @default.
- W2965098473 cites W2034316820 @default.
- W2965098473 cites W2037398224 @default.
- W2965098473 cites W2042229599 @default.
- W2965098473 cites W2052779929 @default.
- W2965098473 cites W2062773906 @default.
- W2965098473 cites W2062798124 @default.
- W2965098473 cites W2065217067 @default.
- W2965098473 cites W2080134555 @default.
- W2965098473 cites W2080859850 @default.
- W2965098473 cites W2082507487 @default.
- W2965098473 cites W2089314377 @default.
- W2965098473 cites W2089732239 @default.
- W2965098473 cites W2092803403 @default.
- W2965098473 cites W2122447387 @default.
- W2965098473 cites W2122825543 @default.
- W2965098473 cites W2142347478 @default.
- W2965098473 cites W2143296882 @default.
- W2965098473 cites W2171132626 @default.
- W2965098473 cites W2212030792 @default.
- W2965098473 cites W2296302855 @default.
- W2965098473 cites W2320371513 @default.
- W2965098473 cites W2463798017 @default.
- W2965098473 cites W2516005314 @default.
- W2965098473 cites W2523887947 @default.
- W2965098473 cites W2554357049 @default.
- W2965098473 cites W2615671695 @default.
- W2965098473 cites W2738594918 @default.
- W2965098473 cites W2743430388 @default.
- W2965098473 cites W2751528411 @default.
- W2965098473 cites W2765825416 @default.
- W2965098473 cites W2793831793 @default.
- W2965098473 cites W2797238750 @default.
- W2965098473 cites W2799855242 @default.
- W2965098473 cites W2800289446 @default.
- W2965098473 cites W2802220384 @default.
- W2965098473 cites W2882999202 @default.
- W2965098473 cites W2896305990 @default.
- W2965098473 cites W2904647462 @default.
- W2965098473 cites W2911582087 @default.
- W2965098473 cites W2944159562 @default.
- W2965098473 cites W2944353638 @default.
- W2965098473 cites W2944555151 @default.
- W2965098473 cites W2961516840 @default.
- W2965098473 cites W2963796288 @default.
- W2965098473 cites W2973374668 @default.
- W2965098473 cites W576584368 @default.
- W2965098473 cites W978749975 @default.
- W2965098473 doi "https://doi.org/10.1016/j.enggeo.2019.105237" @default.
- W2965098473 hasPublicationYear "2019" @default.
- W2965098473 type Work @default.
- W2965098473 sameAs 2965098473 @default.
- W2965098473 citedByCount "49" @default.
- W2965098473 countsByYear W29650984732019 @default.
- W2965098473 countsByYear W29650984732020 @default.
- W2965098473 countsByYear W29650984732021 @default.
- W2965098473 countsByYear W29650984732022 @default.
- W2965098473 countsByYear W29650984732023 @default.
- W2965098473 crossrefType "journal-article" @default.
- W2965098473 hasAuthorship W2965098473A5003112805 @default.
- W2965098473 hasAuthorship W2965098473A5037423371 @default.
- W2965098473 hasAuthorship W2965098473A5058353143 @default.
- W2965098473 hasAuthorship W2965098473A5077186504 @default.
- W2965098473 hasBestOaLocation W29650984732 @default.
- W2965098473 hasConcept C105795698 @default.
- W2965098473 hasConcept C118671147 @default.
- W2965098473 hasConcept C119043178 @default.
- W2965098473 hasConcept C127313418 @default.
- W2965098473 hasConcept C136764020 @default.
- W2965098473 hasConcept C149782125 @default.
- W2965098473 hasConcept C151956035 @default.
- W2965098473 hasConcept C166957645 @default.
- W2965098473 hasConcept C186295008 @default.
- W2965098473 hasConcept C187320778 @default.