Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965210785> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2965210785 abstract "Facial landmark detection has witnessed substantial progress due to introducing convolutional neural networks. Nonetheless, current convolutional neural networks-based approaches ignore the useful geometric relationship between different facial locations. To address this issue, we propose a new module to model the facial geometric relationship. The module can be integrated into the convolutional neural networks architecture to obtain the geometric representation, whereafter we leverage bilinear pooling operation to embed it into high-level feature maps of original face image so as to produce the more discriminative face representation. Extensive evaluation experiments on multiple challenging benchmark datasets demonstrate that our captured geometric information is robust against occlusion and head pose variation and our proposed method outperforms state-of-the-art methods." @default.
- W2965210785 created "2019-08-13" @default.
- W2965210785 creator A5082530816 @default.
- W2965210785 creator A5087677543 @default.
- W2965210785 date "2019-07-01" @default.
- W2965210785 modified "2023-10-12" @default.
- W2965210785 title "Deep Geometry Embedding Networks for Robust Facial Landmark Detection" @default.
- W2965210785 cites W1606858007 @default.
- W2965210785 cites W1795776638 @default.
- W2965210785 cites W1896424170 @default.
- W2965210785 cites W1976948919 @default.
- W2965210785 cites W2005264304 @default.
- W2965210785 cites W2038952578 @default.
- W2965210785 cites W2104095591 @default.
- W2965210785 cites W2108598243 @default.
- W2965210785 cites W2111372597 @default.
- W2965210785 cites W2152826865 @default.
- W2965210785 cites W2157285372 @default.
- W2965210785 cites W2163998463 @default.
- W2965210785 cites W2194775991 @default.
- W2965210785 cites W2283863529 @default.
- W2965210785 cites W2328759189 @default.
- W2965210785 cites W2474575620 @default.
- W2965210785 cites W2547715144 @default.
- W2965210785 cites W2731821979 @default.
- W2965210785 cites W2736934026 @default.
- W2965210785 cites W2740020909 @default.
- W2965210785 cites W2751039938 @default.
- W2965210785 cites W2798898313 @default.
- W2965210785 cites W2898808247 @default.
- W2965210785 cites W2962887041 @default.
- W2965210785 cites W2964309795 @default.
- W2965210785 doi "https://doi.org/10.1109/icme.2019.00213" @default.
- W2965210785 hasPublicationYear "2019" @default.
- W2965210785 type Work @default.
- W2965210785 sameAs 2965210785 @default.
- W2965210785 citedByCount "1" @default.
- W2965210785 countsByYear W29652107852021 @default.
- W2965210785 crossrefType "proceedings-article" @default.
- W2965210785 hasAuthorship W2965210785A5082530816 @default.
- W2965210785 hasAuthorship W2965210785A5087677543 @default.
- W2965210785 hasConcept C138885662 @default.
- W2965210785 hasConcept C144024400 @default.
- W2965210785 hasConcept C153083717 @default.
- W2965210785 hasConcept C153180895 @default.
- W2965210785 hasConcept C154945302 @default.
- W2965210785 hasConcept C205203396 @default.
- W2965210785 hasConcept C2776401178 @default.
- W2965210785 hasConcept C2779304628 @default.
- W2965210785 hasConcept C2780297707 @default.
- W2965210785 hasConcept C31972630 @default.
- W2965210785 hasConcept C32990609 @default.
- W2965210785 hasConcept C36289849 @default.
- W2965210785 hasConcept C41008148 @default.
- W2965210785 hasConcept C41608201 @default.
- W2965210785 hasConcept C41895202 @default.
- W2965210785 hasConcept C52622490 @default.
- W2965210785 hasConcept C70437156 @default.
- W2965210785 hasConcept C81363708 @default.
- W2965210785 hasConcept C97931131 @default.
- W2965210785 hasConceptScore W2965210785C138885662 @default.
- W2965210785 hasConceptScore W2965210785C144024400 @default.
- W2965210785 hasConceptScore W2965210785C153083717 @default.
- W2965210785 hasConceptScore W2965210785C153180895 @default.
- W2965210785 hasConceptScore W2965210785C154945302 @default.
- W2965210785 hasConceptScore W2965210785C205203396 @default.
- W2965210785 hasConceptScore W2965210785C2776401178 @default.
- W2965210785 hasConceptScore W2965210785C2779304628 @default.
- W2965210785 hasConceptScore W2965210785C2780297707 @default.
- W2965210785 hasConceptScore W2965210785C31972630 @default.
- W2965210785 hasConceptScore W2965210785C32990609 @default.
- W2965210785 hasConceptScore W2965210785C36289849 @default.
- W2965210785 hasConceptScore W2965210785C41008148 @default.
- W2965210785 hasConceptScore W2965210785C41608201 @default.
- W2965210785 hasConceptScore W2965210785C41895202 @default.
- W2965210785 hasConceptScore W2965210785C52622490 @default.
- W2965210785 hasConceptScore W2965210785C70437156 @default.
- W2965210785 hasConceptScore W2965210785C81363708 @default.
- W2965210785 hasConceptScore W2965210785C97931131 @default.
- W2965210785 hasLocation W29652107851 @default.
- W2965210785 hasOpenAccess W2965210785 @default.
- W2965210785 hasPrimaryLocation W29652107851 @default.
- W2965210785 hasRelatedWork W1601136714 @default.
- W2965210785 hasRelatedWork W166366606 @default.
- W2965210785 hasRelatedWork W1990932233 @default.
- W2965210785 hasRelatedWork W2016546218 @default.
- W2965210785 hasRelatedWork W2098911910 @default.
- W2965210785 hasRelatedWork W2101003161 @default.
- W2965210785 hasRelatedWork W2140999912 @default.
- W2965210785 hasRelatedWork W2352223314 @default.
- W2965210785 hasRelatedWork W2509618504 @default.
- W2965210785 hasRelatedWork W99616944 @default.
- W2965210785 isParatext "false" @default.
- W2965210785 isRetracted "false" @default.
- W2965210785 magId "2965210785" @default.
- W2965210785 workType "article" @default.