Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965213848> ?p ?o ?g. }
- W2965213848 endingPage "700" @default.
- W2965213848 startingPage "692" @default.
- W2965213848 abstract "DM is a major metabolic disorder that may result in neurodegeneration. Disrupted insulin signaling pathway or glucose metabolism deficiency can induce τ hyperphosphorylation. τ is a microtubule-associated protein. It is moderately phosphorylated under physiological conditions but its hyperphosphorylation reflects pathogenicity and is a major pathological hallmark of neurodegeneration. Phosphorylated τ at Thr231 exists in the two distinct cis and trans conformations. cis p-τ is neurotoxic and drives neurodegeneration. cis p-τ is accumulated in cultured neurons upon oxidative stress as well as nutrition depletion. Several conditions result in neurodegeneration; among which diabetes mellitus (DM) is of crucial importance. Tau (τ) malfunction is a major pathological process participating in neurodegeneration. Despite extensive considerations, the actual causative link between DM and τ abnormalities remains uncertain thus far. Phosphorylated (p)-τ at Thr–Pro motifs can exist in the two distinct cis and trans conformations. cis is neurotoxic, and is accumulated upon various stress conditions, such as nutrition depletion. We assume that pathogenic cis p-τ is the central mediator of neurodegeneration in DM, and propose why different brain areas give various responses to stress conditions. We herein juxtapose recent approaches in diabetic neurodegeneration and propose a therapeutic target to stop neuronal loss during DM. Several conditions result in neurodegeneration; among which diabetes mellitus (DM) is of crucial importance. Tau (τ) malfunction is a major pathological process participating in neurodegeneration. Despite extensive considerations, the actual causative link between DM and τ abnormalities remains uncertain thus far. Phosphorylated (p)-τ at Thr–Pro motifs can exist in the two distinct cis and trans conformations. cis is neurotoxic, and is accumulated upon various stress conditions, such as nutrition depletion. We assume that pathogenic cis p-τ is the central mediator of neurodegeneration in DM, and propose why different brain areas give various responses to stress conditions. We herein juxtapose recent approaches in diabetic neurodegeneration and propose a therapeutic target to stop neuronal loss during DM. high glucose levels can induce nonenzymatic protein glycation, named AGEs. AGEs may have endogenous (inside the body) or exogenous (dietary) origin. AGE accumulation may result in different diabetic related complications; likely through oxidative stress and inflammation. AGEs may trigger different signaling pathways, through interaction with their specific receptors. amyloid precursor protein is a transmembrane protein, whose misprocessing reflects Aβ polypeptide formation. Aβ is one of the major pathological hallmarks accumulating in the extracellular matrix and forms Aβ plaques. Aβ plaques may additionally induce inflammation and oxidative stress, reflecting synapse disruption and neurodegeneration. GSK3β is a member of the proline directed serine–threonine kinase family playing a central role in insulin signaling pathway. It also phosphorylates τ protein. GSK3β function is controlled by phosphorylation at different sites. AKT is a major GSK3β inhibitor being activated upon disturbed insulin signaling pathway in different diseases, such as AD and DM. LTP/LTD are the two important synaptic activities, involved in learning and memory. LTP is a long-lasting synapse strengthens primarily identified in rat hippocampus. Disruption of LTP can induce different cognitive decline diseases; such as AD and PD. LTD is the opposite of LTP and can decrease persistent synapse strengthens. Pin1 is an enzyme that catalyzes cis/trans isomerization of serine/threonine–proline motifs. Pin1 has two distinct domains including the WW domain at the N terminus and PPIase domain at the C terminus. WW domain binds to specific serine/threonine–proline motifs on target proteins and the PPIase domain can induce cis/trans conformational changes in target proteins. Pin1 can affect localization, phosphorylation, interaction, stability, and activity of target proteins. Deregulation of Pin1 activity has contributed to different diseases such as AD, cancer, and DM. Pin1 plays different roles in the insulin signaling pathway. Pin1 can modulate the insulin signaling pathway by affecting activity of proteins such as AKT and GSK3β. Pin1 is suppressed differently under various stress conditions. It is phosphorylated at Ser71 upon traumatic brain injury, downregulated in AD, or oxidized at Cys113 upon oxidative stress; resulting in cis p-τ accumulation. τ is a microtubule-associated protein, whose function is to stabilize microtubule structure in axonal cytoskeleton. It is a phosphoprotein whose functions are thought to be controlled by phosphorylation but its abnormal hyperphosphorylation reflects pathogenicity. Abnormal τ hyperphosphorylation can induce τ dissociation from microtubules, resulting in its aggregation, NTF, and eventually neurodegeneration. There are over 80 phosphorylation sites on τ, and most of them are considered to be physiological sites. It has been demonstrated that phosphorylated τ at Thr–Pro domains may exist in the two distinct cis and trans conformations; whose conversion is mediated by Pin1 isomerase." @default.
- W2965213848 created "2019-08-13" @default.
- W2965213848 creator A5009316580 @default.
- W2965213848 creator A5013009447 @default.
- W2965213848 creator A5048721439 @default.
- W2965213848 creator A5069750662 @default.
- W2965213848 creator A5071100655 @default.
- W2965213848 date "2019-10-01" @default.
- W2965213848 modified "2023-09-26" @default.
- W2965213848 title "A Possible Neurodegeneration Mechanism Triggered by Diabetes" @default.
- W2965213848 cites W1590917599 @default.
- W2965213848 cites W1593781427 @default.
- W2965213848 cites W1629726001 @default.
- W2965213848 cites W1645350431 @default.
- W2965213848 cites W1795993777 @default.
- W2965213848 cites W1934321504 @default.
- W2965213848 cites W1968276382 @default.
- W2965213848 cites W1970945779 @default.
- W2965213848 cites W1975769729 @default.
- W2965213848 cites W1978987033 @default.
- W2965213848 cites W1982795519 @default.
- W2965213848 cites W1988426219 @default.
- W2965213848 cites W1994233628 @default.
- W2965213848 cites W1997820676 @default.
- W2965213848 cites W2007636933 @default.
- W2965213848 cites W2018328223 @default.
- W2965213848 cites W2034529896 @default.
- W2965213848 cites W2035825704 @default.
- W2965213848 cites W2040181124 @default.
- W2965213848 cites W2043311888 @default.
- W2965213848 cites W2048289427 @default.
- W2965213848 cites W2048893204 @default.
- W2965213848 cites W2051532765 @default.
- W2965213848 cites W2058459224 @default.
- W2965213848 cites W2063517065 @default.
- W2965213848 cites W2065380426 @default.
- W2965213848 cites W2102691551 @default.
- W2965213848 cites W2113531489 @default.
- W2965213848 cites W2114358785 @default.
- W2965213848 cites W2124461451 @default.
- W2965213848 cites W2134872273 @default.
- W2965213848 cites W2135148756 @default.
- W2965213848 cites W2144486959 @default.
- W2965213848 cites W2159406238 @default.
- W2965213848 cites W2162663513 @default.
- W2965213848 cites W2164082141 @default.
- W2965213848 cites W2207316462 @default.
- W2965213848 cites W2211614117 @default.
- W2965213848 cites W2287859856 @default.
- W2965213848 cites W2289534404 @default.
- W2965213848 cites W2292119482 @default.
- W2965213848 cites W2320715666 @default.
- W2965213848 cites W2510149493 @default.
- W2965213848 cites W2512955684 @default.
- W2965213848 cites W2525940741 @default.
- W2965213848 cites W2528683944 @default.
- W2965213848 cites W2529011161 @default.
- W2965213848 cites W2538327555 @default.
- W2965213848 cites W2558063058 @default.
- W2965213848 cites W2559910306 @default.
- W2965213848 cites W2563087870 @default.
- W2965213848 cites W2593034833 @default.
- W2965213848 cites W2605143093 @default.
- W2965213848 cites W2606704562 @default.
- W2965213848 cites W2607709799 @default.
- W2965213848 cites W2626461854 @default.
- W2965213848 cites W2727929522 @default.
- W2965213848 cites W2744402516 @default.
- W2965213848 cites W2762474536 @default.
- W2965213848 cites W2767741561 @default.
- W2965213848 cites W2769538716 @default.
- W2965213848 cites W2773659498 @default.
- W2965213848 cites W2786962139 @default.
- W2965213848 cites W2787280772 @default.
- W2965213848 cites W2788048790 @default.
- W2965213848 cites W2802048471 @default.
- W2965213848 cites W2803694856 @default.
- W2965213848 cites W2806134279 @default.
- W2965213848 cites W2897520761 @default.
- W2965213848 cites W2909649716 @default.
- W2965213848 doi "https://doi.org/10.1016/j.tem.2019.07.012" @default.
- W2965213848 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31399291" @default.
- W2965213848 hasPublicationYear "2019" @default.
- W2965213848 type Work @default.
- W2965213848 sameAs 2965213848 @default.
- W2965213848 citedByCount "16" @default.
- W2965213848 countsByYear W29652138482019 @default.
- W2965213848 countsByYear W29652138482020 @default.
- W2965213848 countsByYear W29652138482021 @default.
- W2965213848 countsByYear W29652138482022 @default.
- W2965213848 countsByYear W29652138482023 @default.
- W2965213848 crossrefType "journal-article" @default.
- W2965213848 hasAuthorship W2965213848A5009316580 @default.
- W2965213848 hasAuthorship W2965213848A5013009447 @default.
- W2965213848 hasAuthorship W2965213848A5048721439 @default.
- W2965213848 hasAuthorship W2965213848A5069750662 @default.
- W2965213848 hasAuthorship W2965213848A5071100655 @default.
- W2965213848 hasConcept C11960822 @default.