Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965249190> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2965249190 abstract "Color-coded aperture (CCA) methods can physically measure the depth of a scene given by physical cues from a single-shot image of a monocular camera. However, they are vulnerable to actual lens aberrations in real scenes because they assume an ideal lens for simplifying algorithms. In this paper, we propose physical cue-based deep learning for CCA photography. To address actual lens aberrations, we developed a deep deaberration network (DDN) that is additionally equipped with a self-attention mechanism of position and color channels to efficiently learn the lens aberration. Furthermore, a new Bayes L1 loss function based on Bayesian deep learning enables to handle the uncertainty of depth estimation more accurately. Quantitative and qualitative comparisons demonstrate that our method is superior to conventional methods including real outdoor scenes. Furthermore, compared to a long-baseline stereo camera, the proposed method provides an error-free depth map at close range, as there is no blind spot between the left and right cameras." @default.
- W2965249190 created "2019-08-13" @default.
- W2965249190 creator A5009862786 @default.
- W2965249190 creator A5014591165 @default.
- W2965249190 creator A5028237641 @default.
- W2965249190 creator A5033634754 @default.
- W2965249190 creator A5072566373 @default.
- W2965249190 date "2019-08-01" @default.
- W2965249190 modified "2023-10-17" @default.
- W2965249190 title "Physical Cue based Depth-Sensing by Color Coding with Deaberration Network" @default.
- W2965249190 cites W1573676738 @default.
- W2965249190 cites W1869500417 @default.
- W2965249190 cites W1955055330 @default.
- W2965249190 cites W2009941924 @default.
- W2965249190 cites W2047736581 @default.
- W2965249190 cites W2154571593 @default.
- W2965249190 cites W2155084314 @default.
- W2965249190 cites W2165114467 @default.
- W2965249190 cites W2171740948 @default.
- W2965249190 cites W2194775991 @default.
- W2965249190 cites W2440384215 @default.
- W2965249190 cites W2463955103 @default.
- W2965249190 cites W2481968124 @default.
- W2965249190 cites W2503634632 @default.
- W2965249190 cites W2520707372 @default.
- W2965249190 cites W2536680313 @default.
- W2965249190 cites W2590620738 @default.
- W2965249190 cites W2593414960 @default.
- W2965249190 cites W2600383743 @default.
- W2965249190 cites W2604231069 @default.
- W2965249190 cites W2736613185 @default.
- W2965249190 cites W2778878817 @default.
- W2965249190 cites W2798414551 @default.
- W2965249190 cites W2799726399 @default.
- W2965249190 cites W2809008759 @default.
- W2965249190 cites W2963488291 @default.
- W2965249190 cites W2963502507 @default.
- W2965249190 cites W2963619659 @default.
- W2965249190 cites W2964059111 @default.
- W2965249190 cites W2964121744 @default.
- W2965249190 cites W2998508940 @default.
- W2965249190 doi "https://doi.org/10.48550/arxiv.1908.00329" @default.
- W2965249190 hasPublicationYear "2019" @default.
- W2965249190 type Work @default.
- W2965249190 sameAs 2965249190 @default.
- W2965249190 citedByCount "0" @default.
- W2965249190 crossrefType "posted-content" @default.
- W2965249190 hasAuthorship W2965249190A5009862786 @default.
- W2965249190 hasAuthorship W2965249190A5014591165 @default.
- W2965249190 hasAuthorship W2965249190A5028237641 @default.
- W2965249190 hasAuthorship W2965249190A5033634754 @default.
- W2965249190 hasAuthorship W2965249190A5072566373 @default.
- W2965249190 hasBestOaLocation W29652491901 @default.
- W2965249190 hasConcept C108583219 @default.
- W2965249190 hasConcept C120665830 @default.
- W2965249190 hasConcept C121332964 @default.
- W2965249190 hasConcept C15336307 @default.
- W2965249190 hasConcept C154945302 @default.
- W2965249190 hasConcept C31972630 @default.
- W2965249190 hasConcept C41008148 @default.
- W2965249190 hasConcept C65909025 @default.
- W2965249190 hasConceptScore W2965249190C108583219 @default.
- W2965249190 hasConceptScore W2965249190C120665830 @default.
- W2965249190 hasConceptScore W2965249190C121332964 @default.
- W2965249190 hasConceptScore W2965249190C15336307 @default.
- W2965249190 hasConceptScore W2965249190C154945302 @default.
- W2965249190 hasConceptScore W2965249190C31972630 @default.
- W2965249190 hasConceptScore W2965249190C41008148 @default.
- W2965249190 hasConceptScore W2965249190C65909025 @default.
- W2965249190 hasLocation W29652491901 @default.
- W2965249190 hasOpenAccess W2965249190 @default.
- W2965249190 hasPrimaryLocation W29652491901 @default.
- W2965249190 hasRelatedWork W127013308 @default.
- W2965249190 hasRelatedWork W1628937209 @default.
- W2965249190 hasRelatedWork W1881882553 @default.
- W2965249190 hasRelatedWork W2094957557 @default.
- W2965249190 hasRelatedWork W2113039159 @default.
- W2965249190 hasRelatedWork W2971051170 @default.
- W2965249190 hasRelatedWork W3006563365 @default.
- W2965249190 hasRelatedWork W4224011692 @default.
- W2965249190 hasRelatedWork W4225827157 @default.
- W2965249190 hasRelatedWork W4321512589 @default.
- W2965249190 isParatext "false" @default.
- W2965249190 isRetracted "false" @default.
- W2965249190 magId "2965249190" @default.
- W2965249190 workType "article" @default.