Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965287316> ?p ?o ?g. }
- W2965287316 abstract "While generality is often desirable in ecology, customized models for individual species are thought to be more predictive by accounting for context specificity. However, fully customized models require more information for focal species. We focus on pest spread and ask: How much does predictive power differ between generalized and customized models? Further, we examine whether an intermediate semi-generalized model, combining elements of a general model with species-specific modifications, could yield predictive advantages. We compared predictive power of a generalized model applied to all forest pest species (the generalized dispersal kernel or GDK) to customized spread models for three invasive forest pests (beech bark disease [Cryptococcus fagisuga], gypsy moth [Lymantria dispar], and hemlock woolly adelgid [Adelges tsugae]), for which time-series data exist. We generated semi-generalized dispersal kernel models (SDK) through GDK correction factors based on additional species-specific information. We found that customized models were more predictive than the GDK by an average of 17% for the three species examined, although the GDK still had strong predictive ability (57% spatial variation explained). However, by combining the GDK with simple corrections into the SDK model, we attained a mean of 91% of the spatial variation explained, compared to 74% for the customized models. This is, to our knowledge, the first comparison of general and species-specific ecological spread models' predictive abilities. Our strong predictive results suggest that general models can be effectively synthesized with context-specific information for single species to respond quickly to invasions. We provided SDK forecasts to 2030 for all 63 United States pests in our data set." @default.
- W2965287316 created "2019-08-13" @default.
- W2965287316 creator A5012811435 @default.
- W2965287316 creator A5049999368 @default.
- W2965287316 creator A5084512487 @default.
- W2965287316 date "2019-11-15" @default.
- W2965287316 modified "2023-09-26" @default.
- W2965287316 title "Comparing generalized and customized spread models for nonnative forest pests" @default.
- W2965287316 cites W1970674166 @default.
- W2965287316 cites W1995339116 @default.
- W2965287316 cites W1998734830 @default.
- W2965287316 cites W2003366965 @default.
- W2965287316 cites W2004784110 @default.
- W2965287316 cites W2006055706 @default.
- W2965287316 cites W2007900882 @default.
- W2965287316 cites W2034229104 @default.
- W2965287316 cites W2044639821 @default.
- W2965287316 cites W2051974796 @default.
- W2965287316 cites W2063129724 @default.
- W2965287316 cites W2066347815 @default.
- W2965287316 cites W2097935653 @default.
- W2965287316 cites W2102321521 @default.
- W2965287316 cites W2103485732 @default.
- W2965287316 cites W2104960188 @default.
- W2965287316 cites W2125667513 @default.
- W2965287316 cites W2137735407 @default.
- W2965287316 cites W2139080642 @default.
- W2965287316 cites W2143207846 @default.
- W2965287316 cites W2145152984 @default.
- W2965287316 cites W2154248130 @default.
- W2965287316 cites W2164516266 @default.
- W2965287316 cites W2167981820 @default.
- W2965287316 cites W2174349455 @default.
- W2965287316 cites W2180932691 @default.
- W2965287316 cites W2332817337 @default.
- W2965287316 cites W2349654440 @default.
- W2965287316 cites W2586715860 @default.
- W2965287316 cites W2587869187 @default.
- W2965287316 cites W2614464134 @default.
- W2965287316 cites W2753359564 @default.
- W2965287316 cites W2766357777 @default.
- W2965287316 cites W2912335688 @default.
- W2965287316 cites W2913361231 @default.
- W2965287316 cites W2967700660 @default.
- W2965287316 doi "https://doi.org/10.1002/eap.1988" @default.
- W2965287316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31361929" @default.
- W2965287316 hasPublicationYear "2019" @default.
- W2965287316 type Work @default.
- W2965287316 sameAs 2965287316 @default.
- W2965287316 citedByCount "4" @default.
- W2965287316 countsByYear W29652873162021 @default.
- W2965287316 countsByYear W29652873162022 @default.
- W2965287316 countsByYear W29652873162023 @default.
- W2965287316 crossrefType "journal-article" @default.
- W2965287316 hasAuthorship W2965287316A5012811435 @default.
- W2965287316 hasAuthorship W2965287316A5049999368 @default.
- W2965287316 hasAuthorship W2965287316A5084512487 @default.
- W2965287316 hasConcept C111472728 @default.
- W2965287316 hasConcept C119857082 @default.
- W2965287316 hasConcept C138885662 @default.
- W2965287316 hasConcept C144024400 @default.
- W2965287316 hasConcept C149923435 @default.
- W2965287316 hasConcept C151730666 @default.
- W2965287316 hasConcept C15744967 @default.
- W2965287316 hasConcept C177756618 @default.
- W2965287316 hasConcept C18903297 @default.
- W2965287316 hasConcept C2778136018 @default.
- W2965287316 hasConcept C2778761576 @default.
- W2965287316 hasConcept C2779343474 @default.
- W2965287316 hasConcept C2780767217 @default.
- W2965287316 hasConcept C2908647359 @default.
- W2965287316 hasConcept C41008148 @default.
- W2965287316 hasConcept C45804977 @default.
- W2965287316 hasConcept C47559259 @default.
- W2965287316 hasConcept C542102704 @default.
- W2965287316 hasConcept C86803240 @default.
- W2965287316 hasConceptScore W2965287316C111472728 @default.
- W2965287316 hasConceptScore W2965287316C119857082 @default.
- W2965287316 hasConceptScore W2965287316C138885662 @default.
- W2965287316 hasConceptScore W2965287316C144024400 @default.
- W2965287316 hasConceptScore W2965287316C149923435 @default.
- W2965287316 hasConceptScore W2965287316C151730666 @default.
- W2965287316 hasConceptScore W2965287316C15744967 @default.
- W2965287316 hasConceptScore W2965287316C177756618 @default.
- W2965287316 hasConceptScore W2965287316C18903297 @default.
- W2965287316 hasConceptScore W2965287316C2778136018 @default.
- W2965287316 hasConceptScore W2965287316C2778761576 @default.
- W2965287316 hasConceptScore W2965287316C2779343474 @default.
- W2965287316 hasConceptScore W2965287316C2780767217 @default.
- W2965287316 hasConceptScore W2965287316C2908647359 @default.
- W2965287316 hasConceptScore W2965287316C41008148 @default.
- W2965287316 hasConceptScore W2965287316C45804977 @default.
- W2965287316 hasConceptScore W2965287316C47559259 @default.
- W2965287316 hasConceptScore W2965287316C542102704 @default.
- W2965287316 hasConceptScore W2965287316C86803240 @default.
- W2965287316 hasIssue "1" @default.
- W2965287316 hasLocation W29652873161 @default.
- W2965287316 hasLocation W29652873162 @default.
- W2965287316 hasOpenAccess W2965287316 @default.
- W2965287316 hasPrimaryLocation W29652873161 @default.