Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965316611> ?p ?o ?g. }
- W2965316611 abstract "With the increased availability of condition monitoring data and the increased complexity of explicit system physics-based models, the application of data-driven approaches for fault detection and isolation has recently grown. While detection accuracy of such approaches is generally good, their performance on fault isolation often suffers from the fact that fault conditions affect a large portion of the measured signals thereby masking the fault source. To overcome this limitation and enable a more accurate fault detection, we propose a hybrid approach combining physical performance models with deep learning algorithms. Unobserved process variables are inferred with a physics-based performance model to enhance the input space of a data-driven diagnostics model. To validate the effectiveness of the proposed method, we generate a condition monitoring dataset of an advanced gas turbine during flight conditions under healthy and four faulty operative conditions based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dynamical model. We evaluate the performance of the proposed method in combination with two different deep learning algorithms: feed forward neural networks and Variational Autoencoders, both of which demonstrate a significant improvement when applied within the hybrid fault detection and diagnostics framework. The proposed method is able to outperform pure data-driven solutions, particularly for systems with a high variability of operating conditions. It provides superior results both for fault detection as well as for fault isolation. For fault isolation, it overcomes the smearing effect that is observed in pure data-driven approaches and enables a precise isolation of the affected signal. We also demonstrate that deep learning algorithms provide a better performance on fault detection compared to the traditional machine learning algorithms." @default.
- W2965316611 created "2019-08-13" @default.
- W2965316611 creator A5028742361 @default.
- W2965316611 creator A5062578105 @default.
- W2965316611 creator A5071518289 @default.
- W2965316611 creator A5079637160 @default.
- W2965316611 date "2019-08-05" @default.
- W2965316611 modified "2023-09-28" @default.
- W2965316611 title "Hybrid deep fault detection and isolation: Combining deep neural networks and system performance models" @default.
- W2965316611 cites W1533861849 @default.
- W2965316611 cites W1614900577 @default.
- W2965316611 cites W1959608418 @default.
- W2965316611 cites W1978548669 @default.
- W2965316611 cites W2007797768 @default.
- W2965316611 cites W2020934227 @default.
- W2965316611 cites W2074399002 @default.
- W2965316611 cites W2101234009 @default.
- W2965316611 cites W2105497548 @default.
- W2965316611 cites W2119880843 @default.
- W2965316611 cites W2156530876 @default.
- W2965316611 cites W2176274184 @default.
- W2965316611 cites W2252857348 @default.
- W2965316611 cites W2258171264 @default.
- W2965316611 cites W2467604901 @default.
- W2965316611 cites W2530247831 @default.
- W2965316611 cites W2547617640 @default.
- W2965316611 cites W2567271240 @default.
- W2965316611 cites W2793062918 @default.
- W2965316611 cites W2799620499 @default.
- W2965316611 cites W2895643482 @default.
- W2965316611 cites W2903782687 @default.
- W2965316611 cites W2909335916 @default.
- W2965316611 cites W2957643644 @default.
- W2965316611 cites W2964121744 @default.
- W2965316611 cites W2973319128 @default.
- W2965316611 cites W2975859275 @default.
- W2965316611 cites W809430598 @default.
- W2965316611 hasPublicationYear "2019" @default.
- W2965316611 type Work @default.
- W2965316611 sameAs 2965316611 @default.
- W2965316611 citedByCount "0" @default.
- W2965316611 crossrefType "posted-content" @default.
- W2965316611 hasAuthorship W2965316611A5028742361 @default.
- W2965316611 hasAuthorship W2965316611A5062578105 @default.
- W2965316611 hasAuthorship W2965316611A5071518289 @default.
- W2965316611 hasAuthorship W2965316611A5079637160 @default.
- W2965316611 hasConcept C101468663 @default.
- W2965316611 hasConcept C108583219 @default.
- W2965316611 hasConcept C111919701 @default.
- W2965316611 hasConcept C119857082 @default.
- W2965316611 hasConcept C127313418 @default.
- W2965316611 hasConcept C152745839 @default.
- W2965316611 hasConcept C154945302 @default.
- W2965316611 hasConcept C165205528 @default.
- W2965316611 hasConcept C172707124 @default.
- W2965316611 hasConcept C175551986 @default.
- W2965316611 hasConcept C2775941552 @default.
- W2965316611 hasConcept C41008148 @default.
- W2965316611 hasConcept C50644808 @default.
- W2965316611 hasConcept C86803240 @default.
- W2965316611 hasConcept C89423630 @default.
- W2965316611 hasConceptScore W2965316611C101468663 @default.
- W2965316611 hasConceptScore W2965316611C108583219 @default.
- W2965316611 hasConceptScore W2965316611C111919701 @default.
- W2965316611 hasConceptScore W2965316611C119857082 @default.
- W2965316611 hasConceptScore W2965316611C127313418 @default.
- W2965316611 hasConceptScore W2965316611C152745839 @default.
- W2965316611 hasConceptScore W2965316611C154945302 @default.
- W2965316611 hasConceptScore W2965316611C165205528 @default.
- W2965316611 hasConceptScore W2965316611C172707124 @default.
- W2965316611 hasConceptScore W2965316611C175551986 @default.
- W2965316611 hasConceptScore W2965316611C2775941552 @default.
- W2965316611 hasConceptScore W2965316611C41008148 @default.
- W2965316611 hasConceptScore W2965316611C50644808 @default.
- W2965316611 hasConceptScore W2965316611C86803240 @default.
- W2965316611 hasConceptScore W2965316611C89423630 @default.
- W2965316611 hasOpenAccess W2965316611 @default.
- W2965316611 hasRelatedWork W1991269832 @default.
- W2965316611 hasRelatedWork W2016360899 @default.
- W2965316611 hasRelatedWork W2021464264 @default.
- W2965316611 hasRelatedWork W2159016095 @default.
- W2965316611 hasRelatedWork W2223130469 @default.
- W2965316611 hasRelatedWork W2312794537 @default.
- W2965316611 hasRelatedWork W2325668870 @default.
- W2965316611 hasRelatedWork W2408360507 @default.
- W2965316611 hasRelatedWork W2552907065 @default.
- W2965316611 hasRelatedWork W2725454195 @default.
- W2965316611 hasRelatedWork W2770006443 @default.
- W2965316611 hasRelatedWork W2791139105 @default.
- W2965316611 hasRelatedWork W2898012718 @default.
- W2965316611 hasRelatedWork W2899705330 @default.
- W2965316611 hasRelatedWork W2901240338 @default.
- W2965316611 hasRelatedWork W2985882047 @default.
- W2965316611 hasRelatedWork W3043297920 @default.
- W2965316611 hasRelatedWork W3152641984 @default.
- W2965316611 hasRelatedWork W3202476329 @default.
- W2965316611 hasRelatedWork W616458020 @default.
- W2965316611 isParatext "false" @default.
- W2965316611 isRetracted "false" @default.
- W2965316611 magId "2965316611" @default.