Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965367078> ?p ?o ?g. }
- W2965367078 endingPage "3451" @default.
- W2965367078 startingPage "3451" @default.
- W2965367078 abstract "Cameron Highland is a popular tourist hub in the mountainous area of Peninsular Malaysia. Most communities in this area suffer frequent incidence of debris flow, especially during monsoon seasons. Despite the loss of lives and properties recorded annually from debris flow, most studies in the region concentrate on landslides and flood susceptibilities. In this study, debris-flow susceptibility prediction was carried out using two data mining techniques; Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) models. The existing inventory of debris-flow events (640 points) were selected for training 70% (448) and validation 30% (192). Twelve conditioning factors namely; elevation, plan-curvature, slope angle, total curvature, slope aspect, Stream Transport Index (STI), profile curvature, roughness index, Stream Catchment Area (SCA), Stream Power Index (SPI), Topographic Wetness Index (TWI) and Topographic Position Index (TPI) were selected from Light Detection and Ranging (LiDAR)-derived Digital Elevation Model (DEM) data. Multi-collinearity was checked using Information Factor, Cramer's V, and Gini Index to identify the relative importance of conditioning factors. The susceptibility models were produced and categorized into five classes; not-susceptible, low, moderate, high and very-high classes. Models performances were evaluated using success and prediction rates where the area under the curve (AUC) showed a higher performance of MARS (93% and 83%) over SVR (76% and 72%). The result of this study will be important in contingency hazards and risks management plans to reduce the loss of lives and properties in the area." @default.
- W2965367078 created "2019-08-13" @default.
- W2965367078 creator A5000960537 @default.
- W2965367078 creator A5040730615 @default.
- W2965367078 creator A5059040421 @default.
- W2965367078 creator A5063134421 @default.
- W2965367078 creator A5066424109 @default.
- W2965367078 creator A5084255329 @default.
- W2965367078 date "2019-08-07" @default.
- W2965367078 modified "2023-09-26" @default.
- W2965367078 title "Data Mining and Statistical Approaches in Debris-Flow Susceptibility Modelling Using Airborne LiDAR Data" @default.
- W2965367078 cites W1103385825 @default.
- W2965367078 cites W1624968274 @default.
- W2965367078 cites W1765359963 @default.
- W2965367078 cites W1963946303 @default.
- W2965367078 cites W1968812675 @default.
- W2965367078 cites W1971765817 @default.
- W2965367078 cites W1972508359 @default.
- W2965367078 cites W1972940559 @default.
- W2965367078 cites W1972951236 @default.
- W2965367078 cites W1973106681 @default.
- W2965367078 cites W1975026426 @default.
- W2965367078 cites W1976972127 @default.
- W2965367078 cites W1976989609 @default.
- W2965367078 cites W1979486410 @default.
- W2965367078 cites W1980725494 @default.
- W2965367078 cites W1981761597 @default.
- W2965367078 cites W1982224836 @default.
- W2965367078 cites W1982603755 @default.
- W2965367078 cites W1983007206 @default.
- W2965367078 cites W1983865151 @default.
- W2965367078 cites W1984035112 @default.
- W2965367078 cites W1988816342 @default.
- W2965367078 cites W1990984169 @default.
- W2965367078 cites W1998305670 @default.
- W2965367078 cites W2002271711 @default.
- W2965367078 cites W2005862557 @default.
- W2965367078 cites W2006969621 @default.
- W2965367078 cites W2008432657 @default.
- W2965367078 cites W2010919282 @default.
- W2965367078 cites W2011051890 @default.
- W2965367078 cites W2012118327 @default.
- W2965367078 cites W2012619152 @default.
- W2965367078 cites W2016029130 @default.
- W2965367078 cites W2018398490 @default.
- W2965367078 cites W2020022516 @default.
- W2965367078 cites W2020780225 @default.
- W2965367078 cites W2021675301 @default.
- W2965367078 cites W2021750671 @default.
- W2965367078 cites W2024231044 @default.
- W2965367078 cites W2024933191 @default.
- W2965367078 cites W2027902860 @default.
- W2965367078 cites W2029871071 @default.
- W2965367078 cites W2030024121 @default.
- W2965367078 cites W2032075694 @default.
- W2965367078 cites W2033754972 @default.
- W2965367078 cites W2035491076 @default.
- W2965367078 cites W2037308434 @default.
- W2965367078 cites W2037402385 @default.
- W2965367078 cites W2042229599 @default.
- W2965367078 cites W2046052107 @default.
- W2965367078 cites W2047028263 @default.
- W2965367078 cites W2049271682 @default.
- W2965367078 cites W2052525369 @default.
- W2965367078 cites W2052951206 @default.
- W2965367078 cites W2053134135 @default.
- W2965367078 cites W2054359607 @default.
- W2965367078 cites W2054510156 @default.
- W2965367078 cites W2057172338 @default.
- W2965367078 cites W2060775322 @default.
- W2965367078 cites W2061634726 @default.
- W2965367078 cites W2062046070 @default.
- W2965367078 cites W2062689773 @default.
- W2965367078 cites W2063080203 @default.
- W2965367078 cites W2070242463 @default.
- W2965367078 cites W2070638918 @default.
- W2965367078 cites W2072231754 @default.
- W2965367078 cites W2072379588 @default.
- W2965367078 cites W2073018583 @default.
- W2965367078 cites W2073350698 @default.
- W2965367078 cites W2078964569 @default.
- W2965367078 cites W2081345111 @default.
- W2965367078 cites W2081614715 @default.
- W2965367078 cites W2082622325 @default.
- W2965367078 cites W2086574870 @default.
- W2965367078 cites W2088730795 @default.
- W2965367078 cites W2090715229 @default.
- W2965367078 cites W2095701214 @default.
- W2965367078 cites W2097453448 @default.
- W2965367078 cites W2099572368 @default.
- W2965367078 cites W2102201073 @default.
- W2965367078 cites W2104229320 @default.
- W2965367078 cites W2104960492 @default.
- W2965367078 cites W2105918836 @default.
- W2965367078 cites W2108014646 @default.
- W2965367078 cites W2108053493 @default.
- W2965367078 cites W2120798690 @default.
- W2965367078 cites W2139156616 @default.