Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965465741> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2965465741 endingPage "104600" @default.
- W2965465741 startingPage "104591" @default.
- W2965465741 abstract "Modulation recognition is a major task in many wireless communication systems including cognitive radio and signal reconnaissance. The diversification of modulation schemes and the increased complexity of the channel environment put higher requirements on the correct identification of modulated signals. Deep learning (DL) is considered as a potential solution to solve these problems due to the superior big data processing and classification capabilities. This paper proposes an efficient digital modulation recognition method based on deep neural network (DNN) model. Furthermore, we present the particle swarm optimization (PSO) algorithm to optimize the number of hidden layer nodes of the DNN so as to solve the problem that the traditional DNN is trapped in local minimum values and the number of hidden layer nodes needs selecting manually. In this paper, we utilize the proposed PSO-DNN method to learn characteristics extracted from the modulated signal added by additive white Gaussian noise (AWGN) and to train the network, which can improve the performance of recognition under the condition of low signal-to-noise ratio (SNR). The experimental results demonstrate that the recognition rate on this algorithm has improved by 9.4% and 8.8% compared with methods that adopt conventional DNN and support vector machine (SVM) when SNR equals 0 and 1 dB, respectively. Besides, another experiment compared with the genetic algorithm (GA) also proves that our proposed algorithm is more effective in optimizing the DNN. The proposed method is easy to be implemented so that it has a broad development prospect in modulation recognition." @default.
- W2965465741 created "2019-08-13" @default.
- W2965465741 creator A5018244514 @default.
- W2965465741 creator A5026546306 @default.
- W2965465741 creator A5027210355 @default.
- W2965465741 creator A5033452143 @default.
- W2965465741 creator A5086778602 @default.
- W2965465741 date "2019-01-01" @default.
- W2965465741 modified "2023-10-13" @default.
- W2965465741 title "Particle Swarm Optimization-Based Deep Neural Network for Digital Modulation Recognition" @default.
- W2965465741 cites W2146959670 @default.
- W2965465741 cites W2154489226 @default.
- W2965465741 cites W2399401315 @default.
- W2965465741 cites W2560036562 @default.
- W2965465741 cites W2580817561 @default.
- W2965465741 cites W2624887404 @default.
- W2965465741 cites W2754643364 @default.
- W2965465741 cites W2760287881 @default.
- W2965465741 cites W2775383661 @default.
- W2965465741 cites W2787255353 @default.
- W2965465741 cites W2884089434 @default.
- W2965465741 cites W2886334544 @default.
- W2965465741 cites W2892154397 @default.
- W2965465741 cites W2893236851 @default.
- W2965465741 cites W2896770027 @default.
- W2965465741 cites W2901024685 @default.
- W2965465741 cites W2910123878 @default.
- W2965465741 cites W2911696931 @default.
- W2965465741 cites W2914913926 @default.
- W2965465741 cites W2921428784 @default.
- W2965465741 cites W2927066960 @default.
- W2965465741 cites W2927285659 @default.
- W2965465741 cites W2930514556 @default.
- W2965465741 cites W2933397286 @default.
- W2965465741 cites W2963658737 @default.
- W2965465741 doi "https://doi.org/10.1109/access.2019.2932266" @default.
- W2965465741 hasPublicationYear "2019" @default.
- W2965465741 type Work @default.
- W2965465741 sameAs 2965465741 @default.
- W2965465741 citedByCount "29" @default.
- W2965465741 countsByYear W29654657412020 @default.
- W2965465741 countsByYear W29654657412021 @default.
- W2965465741 countsByYear W29654657412022 @default.
- W2965465741 countsByYear W29654657412023 @default.
- W2965465741 crossrefType "journal-article" @default.
- W2965465741 hasAuthorship W2965465741A5018244514 @default.
- W2965465741 hasAuthorship W2965465741A5026546306 @default.
- W2965465741 hasAuthorship W2965465741A5027210355 @default.
- W2965465741 hasAuthorship W2965465741A5033452143 @default.
- W2965465741 hasAuthorship W2965465741A5086778602 @default.
- W2965465741 hasBestOaLocation W29654657411 @default.
- W2965465741 hasConcept C107038049 @default.
- W2965465741 hasConcept C11413529 @default.
- W2965465741 hasConcept C123079801 @default.
- W2965465741 hasConcept C127162648 @default.
- W2965465741 hasConcept C138885662 @default.
- W2965465741 hasConcept C153180895 @default.
- W2965465741 hasConcept C154945302 @default.
- W2965465741 hasConcept C169334058 @default.
- W2965465741 hasConcept C28490314 @default.
- W2965465741 hasConcept C41008148 @default.
- W2965465741 hasConcept C50644808 @default.
- W2965465741 hasConcept C76155785 @default.
- W2965465741 hasConcept C85617194 @default.
- W2965465741 hasConceptScore W2965465741C107038049 @default.
- W2965465741 hasConceptScore W2965465741C11413529 @default.
- W2965465741 hasConceptScore W2965465741C123079801 @default.
- W2965465741 hasConceptScore W2965465741C127162648 @default.
- W2965465741 hasConceptScore W2965465741C138885662 @default.
- W2965465741 hasConceptScore W2965465741C153180895 @default.
- W2965465741 hasConceptScore W2965465741C154945302 @default.
- W2965465741 hasConceptScore W2965465741C169334058 @default.
- W2965465741 hasConceptScore W2965465741C28490314 @default.
- W2965465741 hasConceptScore W2965465741C41008148 @default.
- W2965465741 hasConceptScore W2965465741C50644808 @default.
- W2965465741 hasConceptScore W2965465741C76155785 @default.
- W2965465741 hasConceptScore W2965465741C85617194 @default.
- W2965465741 hasFunder F4320321001 @default.
- W2965465741 hasLocation W29654657411 @default.
- W2965465741 hasOpenAccess W2965465741 @default.
- W2965465741 hasPrimaryLocation W29654657411 @default.
- W2965465741 hasRelatedWork W1970060802 @default.
- W2965465741 hasRelatedWork W2034357437 @default.
- W2965465741 hasRelatedWork W2067874406 @default.
- W2965465741 hasRelatedWork W2147714418 @default.
- W2965465741 hasRelatedWork W2165929056 @default.
- W2965465741 hasRelatedWork W2361617591 @default.
- W2965465741 hasRelatedWork W2378158679 @default.
- W2965465741 hasRelatedWork W2379150398 @default.
- W2965465741 hasRelatedWork W2386387936 @default.
- W2965465741 hasRelatedWork W2966189737 @default.
- W2965465741 hasVolume "7" @default.
- W2965465741 isParatext "false" @default.
- W2965465741 isRetracted "false" @default.
- W2965465741 magId "2965465741" @default.
- W2965465741 workType "article" @default.