Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965476408> ?p ?o ?g. }
- W2965476408 endingPage "084005" @default.
- W2965476408 startingPage "084005" @default.
- W2965476408 abstract "Objective: In this work, a dense recurrent convolutional neural network (DRCNN) was constructed to detect sleep disorders including arousal, apnea and hypopnea using polysomnography (PSG) measurement channels provided in the 2018 PhysioNet Challenge database. Approach: Our model structure is composed of multiple dense convolutional units (DCU) followed by a bidirectional long-short term memory (LSTM) layer followed by a softmax output layer. The sleep events, including sleep stages, arousal regions and multiple types of apnea and hypopnea, are manually annotated by experts, which enables us to train our proposed network using a multi-task learning mechanism. Three binary cross-entropy loss functions, corresponding to sleep/wake, target arousal and apnea-hypopnea/normal detection tasks, are summed up to generate our overall network loss function that is optimized using the Adam method. Our model performance was evaluated using two metrics: the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). To measure our model generalization, 4-fold cross-validation was also performed. For training, our model was applied to full night recording data. Main results: Finally, the average AUPRC and AUROC values associated with the arousal detection task were 0.505 and 0.922, respectively, on our testing dataset. An ensemble of four models trained on different data folds improved the AUPRC and AUROC to 0.543 and 0.931, respectively. Significance: Our proposed algorithm achieved the first place in the official stage of the 2018 PhysioNet Challenge for detecting sleep arousals with an AUPRC of 0.54 on the blind testing dataset." @default.
- W2965476408 created "2019-08-13" @default.
- W2965476408 creator A5008740902 @default.
- W2965476408 creator A5009756105 @default.
- W2965476408 creator A5038665891 @default.
- W2965476408 creator A5079897416 @default.
- W2965476408 date "2019-09-03" @default.
- W2965476408 modified "2023-09-27" @default.
- W2965476408 title "SleepNet: automated sleep analysis via dense convolutional neural network using physiological time series" @default.
- W2965476408 cites W109729959 @default.
- W2965476408 cites W115221371 @default.
- W2965476408 cites W1601020103 @default.
- W2965476408 cites W2003011166 @default.
- W2965476408 cites W2032299679 @default.
- W2965476408 cites W2038569871 @default.
- W2965476408 cites W2054384069 @default.
- W2965476408 cites W2098716734 @default.
- W2965476408 cites W21164167 @default.
- W2965476408 cites W2131111256 @default.
- W2965476408 cites W2134977136 @default.
- W2965476408 cites W2139704316 @default.
- W2965476408 cites W2149694328 @default.
- W2965476408 cites W2162800060 @default.
- W2965476408 cites W2169052721 @default.
- W2965476408 cites W2179673822 @default.
- W2965476408 cites W2296057527 @default.
- W2965476408 cites W2570348948 @default.
- W2965476408 cites W2611695796 @default.
- W2965476408 cites W2621205740 @default.
- W2965476408 cites W2897225663 @default.
- W2965476408 cites W2911596247 @default.
- W2965476408 cites W2912829709 @default.
- W2965476408 cites W2913237197 @default.
- W2965476408 cites W2913249942 @default.
- W2965476408 cites W2913560568 @default.
- W2965476408 cites W2913727581 @default.
- W2965476408 cites W2914296703 @default.
- W2965476408 cites W2971356698 @default.
- W2965476408 doi "https://doi.org/10.1088/1361-6579/ab3632" @default.
- W2965476408 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31349239" @default.
- W2965476408 hasPublicationYear "2019" @default.
- W2965476408 type Work @default.
- W2965476408 sameAs 2965476408 @default.
- W2965476408 citedByCount "10" @default.
- W2965476408 countsByYear W29654764082019 @default.
- W2965476408 countsByYear W29654764082020 @default.
- W2965476408 countsByYear W29654764082021 @default.
- W2965476408 countsByYear W29654764082023 @default.
- W2965476408 crossrefType "journal-article" @default.
- W2965476408 hasAuthorship W2965476408A5008740902 @default.
- W2965476408 hasAuthorship W2965476408A5009756105 @default.
- W2965476408 hasAuthorship W2965476408A5038665891 @default.
- W2965476408 hasAuthorship W2965476408A5079897416 @default.
- W2965476408 hasBestOaLocation W29654764082 @default.
- W2965476408 hasConcept C108583219 @default.
- W2965476408 hasConcept C118552586 @default.
- W2965476408 hasConcept C119857082 @default.
- W2965476408 hasConcept C12267149 @default.
- W2965476408 hasConcept C153180895 @default.
- W2965476408 hasConcept C154945302 @default.
- W2965476408 hasConcept C15744967 @default.
- W2965476408 hasConcept C164705383 @default.
- W2965476408 hasConcept C188441871 @default.
- W2965476408 hasConcept C27181475 @default.
- W2965476408 hasConcept C2777711342 @default.
- W2965476408 hasConcept C2777935920 @default.
- W2965476408 hasConcept C2778205975 @default.
- W2965476408 hasConcept C2779803651 @default.
- W2965476408 hasConcept C2781326671 @default.
- W2965476408 hasConcept C2910364982 @default.
- W2965476408 hasConcept C41008148 @default.
- W2965476408 hasConcept C50644808 @default.
- W2965476408 hasConcept C58471807 @default.
- W2965476408 hasConcept C66905080 @default.
- W2965476408 hasConcept C71924100 @default.
- W2965476408 hasConcept C76155785 @default.
- W2965476408 hasConcept C81363708 @default.
- W2965476408 hasConcept C94915269 @default.
- W2965476408 hasConceptScore W2965476408C108583219 @default.
- W2965476408 hasConceptScore W2965476408C118552586 @default.
- W2965476408 hasConceptScore W2965476408C119857082 @default.
- W2965476408 hasConceptScore W2965476408C12267149 @default.
- W2965476408 hasConceptScore W2965476408C153180895 @default.
- W2965476408 hasConceptScore W2965476408C154945302 @default.
- W2965476408 hasConceptScore W2965476408C15744967 @default.
- W2965476408 hasConceptScore W2965476408C164705383 @default.
- W2965476408 hasConceptScore W2965476408C188441871 @default.
- W2965476408 hasConceptScore W2965476408C27181475 @default.
- W2965476408 hasConceptScore W2965476408C2777711342 @default.
- W2965476408 hasConceptScore W2965476408C2777935920 @default.
- W2965476408 hasConceptScore W2965476408C2778205975 @default.
- W2965476408 hasConceptScore W2965476408C2779803651 @default.
- W2965476408 hasConceptScore W2965476408C2781326671 @default.
- W2965476408 hasConceptScore W2965476408C2910364982 @default.
- W2965476408 hasConceptScore W2965476408C41008148 @default.
- W2965476408 hasConceptScore W2965476408C50644808 @default.
- W2965476408 hasConceptScore W2965476408C58471807 @default.
- W2965476408 hasConceptScore W2965476408C66905080 @default.