Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965487490> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2965487490 abstract "Student's academic performance prediction empowers educational technologies including academic trajectory and degree planning, course recommender systems, early warning and advising systems. Given a student's past data (such as grades in prior courses), the task of student's performance prediction is to predict a student's grades in future courses. Academic programs are structured in a way that prior courses lay the foundation for future courses. The knowledge required by courses is obtained by taking multiple prior courses, which exhibits complex relationships modeled by graph structures. Traditional methods for student's performance prediction usually neglect the underlying relationships between multiple courses; and how students acquire knowledge across them. In addition, traditional methods do not provide interpretation for predictions needed for decision making. In this work, we propose a novel attention-based graph convolutional networks model for student's performance prediction. We conduct extensive experiments on a real-world dataset obtained from a large public university. The experimental results show that our proposed model outperforms state-of-the-art approaches in terms of grade prediction. The proposed model also shows strong accuracy in identifying students who are at-risk of failing or dropping out so that timely intervention and feedback can be provided to the student." @default.
- W2965487490 created "2019-08-13" @default.
- W2965487490 creator A5006581225 @default.
- W2965487490 creator A5040486464 @default.
- W2965487490 date "2019-07-01" @default.
- W2965487490 modified "2023-09-27" @default.
- W2965487490 title "Academic Performance Estimation with Attention-based Graph Convolutional Networks." @default.
- W2965487490 hasPublicationYear "2019" @default.
- W2965487490 type Work @default.
- W2965487490 sameAs 2965487490 @default.
- W2965487490 citedByCount "0" @default.
- W2965487490 crossrefType "proceedings-article" @default.
- W2965487490 hasAuthorship W2965487490A5006581225 @default.
- W2965487490 hasAuthorship W2965487490A5040486464 @default.
- W2965487490 hasConcept C119857082 @default.
- W2965487490 hasConcept C132525143 @default.
- W2965487490 hasConcept C145420912 @default.
- W2965487490 hasConcept C154945302 @default.
- W2965487490 hasConcept C162324750 @default.
- W2965487490 hasConcept C187736073 @default.
- W2965487490 hasConcept C2777598771 @default.
- W2965487490 hasConcept C2777648619 @default.
- W2965487490 hasConcept C2780451532 @default.
- W2965487490 hasConcept C33923547 @default.
- W2965487490 hasConcept C41008148 @default.
- W2965487490 hasConcept C557471498 @default.
- W2965487490 hasConcept C80444323 @default.
- W2965487490 hasConceptScore W2965487490C119857082 @default.
- W2965487490 hasConceptScore W2965487490C132525143 @default.
- W2965487490 hasConceptScore W2965487490C145420912 @default.
- W2965487490 hasConceptScore W2965487490C154945302 @default.
- W2965487490 hasConceptScore W2965487490C162324750 @default.
- W2965487490 hasConceptScore W2965487490C187736073 @default.
- W2965487490 hasConceptScore W2965487490C2777598771 @default.
- W2965487490 hasConceptScore W2965487490C2777648619 @default.
- W2965487490 hasConceptScore W2965487490C2780451532 @default.
- W2965487490 hasConceptScore W2965487490C33923547 @default.
- W2965487490 hasConceptScore W2965487490C41008148 @default.
- W2965487490 hasConceptScore W2965487490C557471498 @default.
- W2965487490 hasConceptScore W2965487490C80444323 @default.
- W2965487490 hasLocation W29654874901 @default.
- W2965487490 hasOpenAccess W2965487490 @default.
- W2965487490 hasPrimaryLocation W29654874901 @default.
- W2965487490 hasRelatedWork W1987799539 @default.
- W2965487490 hasRelatedWork W2566084804 @default.
- W2965487490 hasRelatedWork W2604974253 @default.
- W2965487490 hasRelatedWork W2782887564 @default.
- W2965487490 hasRelatedWork W2800700858 @default.
- W2965487490 hasRelatedWork W2900420400 @default.
- W2965487490 hasRelatedWork W2963448126 @default.
- W2965487490 hasRelatedWork W2963864707 @default.
- W2965487490 hasRelatedWork W2997255974 @default.
- W2965487490 hasRelatedWork W3000921234 @default.
- W2965487490 hasRelatedWork W3002895058 @default.
- W2965487490 hasRelatedWork W3015855602 @default.
- W2965487490 hasRelatedWork W3021872003 @default.
- W2965487490 hasRelatedWork W3023231610 @default.
- W2965487490 hasRelatedWork W3036236654 @default.
- W2965487490 hasRelatedWork W3089984678 @default.
- W2965487490 hasRelatedWork W3118786341 @default.
- W2965487490 hasRelatedWork W3134085449 @default.
- W2965487490 hasRelatedWork W3161970482 @default.
- W2965487490 hasRelatedWork W3204170061 @default.
- W2965487490 isParatext "false" @default.
- W2965487490 isRetracted "false" @default.
- W2965487490 magId "2965487490" @default.
- W2965487490 workType "article" @default.