Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965504641> ?p ?o ?g. }
- W2965504641 endingPage "4970" @default.
- W2965504641 startingPage "4948" @default.
- W2965504641 abstract "Purpose The purpose of this study is to numerically investigate the effect of jet impingement, magnetic field and nanoparticle shape (sphericity) on the hydrodynamic/heat transfer characteristics of nanofluids over stationary and vibrating plates. Design/methodology/approach A two-dimensional finite volume method-based homogeneous heat transfer model has been developed, validated and used in the present investigation. Three different shapes of non-spherical carbon nanoparticles namely nanotubes, nanorods and nanosheets are used in the analysis. Sphericity-based effective thermal conductivity of nanofluids with Brownian motion of nanoparticles is considered in the investigation. Moreover, the ranges of various comprehensive parameters used in the study are Re = 500 to 900, St = 0.0694 to 0.2083 and Ha = 0 to 80. Findings The hydrodynamic/heat transfer performance of jet impingement in the case of vibrating plate is 298 per cent higher than that of stationary plate at Re = 500. However, for the case of vibrating plate, a reduction in the heat transfer performance of 23.35 per cent is observed by increasing the jet Reynolds number from 500 to 900. In the case of vibrating plate, the saturation point for Strouhal number is found to be 0.0833 at Re = 900 and Ha = 0. Further decrement in St beyond this limit leads to a drastic reduction in the performance. Moreover, no recirculation in the flow is observed near the stagnation point for jet impingement over vibrating plate. It is also observed that the effect of magnetic field enhances the performance of jet impingement over a stationary plate by 36.18 per cent at Ha = 80 and Re = 900. Whereas, opposite trend is observed for the case of vibrating plate. Furthermore, at Re = 500, the percentage enhancement in the Nuavg values of 3 Vol.% carbon nanofluid with nanosheets, nanorods and nanotubes are found to be 47.53, 26.86 and 26.85 per cent when compared with the value obtained for pure water. Practical implications The present results will be useful in choosing nanosheets-based nanofluid as the efficient heat transfer medium in cooling of high power electronic devices. Moreover, the obtained saturation point in the Strouhal number of the vibrating plate will help in cooling of turbine blades, as well as paper and textile drying. Moreover, the developed homogeneous heat transfer model can also be used to study different micro-convection phenomena in nanofluids by considering them as source terms in the momentum equation. Originality/value Impingement of jet over two different plate types such as stationary and vibrating is completely analyzed with the use of a validated in-house FVM code. A complete investigation on the influence of external magnetic field on the performance of plate type configuration is evaluated. The three fundamental shapes of carbon nanoparticles are also evaluated to obtain sphericity based hydrodynamic/heat transfer performance of jet impingement." @default.
- W2965504641 created "2019-08-13" @default.
- W2965504641 creator A5032347698 @default.
- W2965504641 creator A5033993155 @default.
- W2965504641 creator A5066309722 @default.
- W2965504641 date "2019-07-29" @default.
- W2965504641 modified "2023-09-25" @default.
- W2965504641 title "Effect of magnetic field and nanoparticle shape on jet impingement over stationary and vibrating plates" @default.
- W2965504641 cites W135966633 @default.
- W2965504641 cites W1759728795 @default.
- W2965504641 cites W1995881568 @default.
- W2965504641 cites W1999644533 @default.
- W2965504641 cites W1999903974 @default.
- W2965504641 cites W2002728487 @default.
- W2965504641 cites W2009944577 @default.
- W2965504641 cites W2010364254 @default.
- W2965504641 cites W2012055871 @default.
- W2965504641 cites W2017901552 @default.
- W2965504641 cites W2019623834 @default.
- W2965504641 cites W2027573401 @default.
- W2965504641 cites W2030522142 @default.
- W2965504641 cites W2035545087 @default.
- W2965504641 cites W2036472873 @default.
- W2965504641 cites W2039016813 @default.
- W2965504641 cites W2043417695 @default.
- W2965504641 cites W2051623369 @default.
- W2965504641 cites W2061339005 @default.
- W2965504641 cites W2083065250 @default.
- W2965504641 cites W2118376964 @default.
- W2965504641 cites W2165923928 @default.
- W2965504641 cites W2171508089 @default.
- W2965504641 cites W2208635947 @default.
- W2965504641 cites W2325111398 @default.
- W2965504641 cites W2340695420 @default.
- W2965504641 cites W2412025955 @default.
- W2965504641 cites W2412325387 @default.
- W2965504641 cites W2418610065 @default.
- W2965504641 cites W2580330098 @default.
- W2965504641 cites W2601403452 @default.
- W2965504641 cites W2732740372 @default.
- W2965504641 cites W2740928349 @default.
- W2965504641 cites W2766593244 @default.
- W2965504641 cites W2777724447 @default.
- W2965504641 cites W2782287712 @default.
- W2965504641 cites W2805152188 @default.
- W2965504641 cites W2883248034 @default.
- W2965504641 cites W2904649722 @default.
- W2965504641 cites W2906889441 @default.
- W2965504641 cites W2911508012 @default.
- W2965504641 doi "https://doi.org/10.1108/hff-04-2019-0328" @default.
- W2965504641 hasPublicationYear "2019" @default.
- W2965504641 type Work @default.
- W2965504641 sameAs 2965504641 @default.
- W2965504641 citedByCount "6" @default.
- W2965504641 countsByYear W29655046412020 @default.
- W2965504641 countsByYear W29655046412021 @default.
- W2965504641 countsByYear W29655046412022 @default.
- W2965504641 countsByYear W29655046412023 @default.
- W2965504641 crossrefType "journal-article" @default.
- W2965504641 hasAuthorship W2965504641A5032347698 @default.
- W2965504641 hasAuthorship W2965504641A5033993155 @default.
- W2965504641 hasAuthorship W2965504641A5066309722 @default.
- W2965504641 hasConcept C119947313 @default.
- W2965504641 hasConcept C121332964 @default.
- W2965504641 hasConcept C143575951 @default.
- W2965504641 hasConcept C159985019 @default.
- W2965504641 hasConcept C173913448 @default.
- W2965504641 hasConcept C182748727 @default.
- W2965504641 hasConcept C192562407 @default.
- W2965504641 hasConcept C196558001 @default.
- W2965504641 hasConcept C21946209 @default.
- W2965504641 hasConcept C2777777821 @default.
- W2965504641 hasConcept C29700514 @default.
- W2965504641 hasConcept C50517652 @default.
- W2965504641 hasConcept C57879066 @default.
- W2965504641 hasConcept C9715774 @default.
- W2965504641 hasConceptScore W2965504641C119947313 @default.
- W2965504641 hasConceptScore W2965504641C121332964 @default.
- W2965504641 hasConceptScore W2965504641C143575951 @default.
- W2965504641 hasConceptScore W2965504641C159985019 @default.
- W2965504641 hasConceptScore W2965504641C173913448 @default.
- W2965504641 hasConceptScore W2965504641C182748727 @default.
- W2965504641 hasConceptScore W2965504641C192562407 @default.
- W2965504641 hasConceptScore W2965504641C196558001 @default.
- W2965504641 hasConceptScore W2965504641C21946209 @default.
- W2965504641 hasConceptScore W2965504641C2777777821 @default.
- W2965504641 hasConceptScore W2965504641C29700514 @default.
- W2965504641 hasConceptScore W2965504641C50517652 @default.
- W2965504641 hasConceptScore W2965504641C57879066 @default.
- W2965504641 hasConceptScore W2965504641C9715774 @default.
- W2965504641 hasIssue "12" @default.
- W2965504641 hasLocation W29655046411 @default.
- W2965504641 hasOpenAccess W2965504641 @default.
- W2965504641 hasPrimaryLocation W29655046411 @default.
- W2965504641 hasRelatedWork W1642818288 @default.
- W2965504641 hasRelatedWork W2088302869 @default.
- W2965504641 hasRelatedWork W2266860477 @default.
- W2965504641 hasRelatedWork W2322387873 @default.