Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965510524> ?p ?o ?g. }
- W2965510524 endingPage "9723" @default.
- W2965510524 startingPage "9709" @default.
- W2965510524 abstract "Noise attenuation plays an important role in seismic data processing. We propose a novel denoising method for seismic data based on unsupervised sparse feature learning. Our goal is to obtain the identifiable feature of the noisy seismic data and then to represent the effective signals. By preprocessing the raw data and training the autoencoder neural network with sparse constraint, the sparse feature of the seismic data can be learned and stored in the neural network. We use the adaptive moment estimation as a backpropagation algorithm to minimize the cost function with a sparse penalty term and combine the dropout technique in the training process to improve the feature extraction and generalization capability of the neural network. Then, the test data set can be reconstructed by the most important sparse features. The final denoising result can be obtained by rearranging the output test data set. Compared with three commonly used state-of-the-art denoising methods, the proposed method performs well in applications to denoising for synthetic and real seismic data." @default.
- W2965510524 created "2019-08-13" @default.
- W2965510524 creator A5014653096 @default.
- W2965510524 creator A5018916500 @default.
- W2965510524 creator A5019972279 @default.
- W2965510524 creator A5037374524 @default.
- W2965510524 date "2019-12-01" @default.
- W2965510524 modified "2023-10-05" @default.
- W2965510524 title "Seismic Noise Attenuation Using Unsupervised Sparse Feature Learning" @default.
- W2965510524 cites W1581984155 @default.
- W2965510524 cites W1853998970 @default.
- W2965510524 cites W1965555277 @default.
- W2965510524 cites W1966299889 @default.
- W2965510524 cites W1973540739 @default.
- W2965510524 cites W1978864107 @default.
- W2965510524 cites W1996098514 @default.
- W2965510524 cites W1997504471 @default.
- W2965510524 cites W2002777061 @default.
- W2965510524 cites W2006603039 @default.
- W2965510524 cites W2007938736 @default.
- W2965510524 cites W2011849692 @default.
- W2965510524 cites W2020205028 @default.
- W2965510524 cites W2021734622 @default.
- W2965510524 cites W2025727209 @default.
- W2965510524 cites W2025768430 @default.
- W2965510524 cites W2033875610 @default.
- W2965510524 cites W2034987538 @default.
- W2965510524 cites W2053757129 @default.
- W2965510524 cites W2075948878 @default.
- W2965510524 cites W2076063813 @default.
- W2965510524 cites W2086288874 @default.
- W2965510524 cites W2087995567 @default.
- W2965510524 cites W2092092640 @default.
- W2965510524 cites W2115528090 @default.
- W2965510524 cites W2117481741 @default.
- W2965510524 cites W2137832649 @default.
- W2965510524 cites W2138354688 @default.
- W2965510524 cites W2141953966 @default.
- W2965510524 cites W2152582233 @default.
- W2965510524 cites W2169165793 @default.
- W2965510524 cites W2170860899 @default.
- W2965510524 cites W2177432006 @default.
- W2965510524 cites W2243550199 @default.
- W2965510524 cites W2271808722 @default.
- W2965510524 cites W2280613569 @default.
- W2965510524 cites W2282024151 @default.
- W2965510524 cites W2294362001 @default.
- W2965510524 cites W2294674895 @default.
- W2965510524 cites W2342561031 @default.
- W2965510524 cites W2345190138 @default.
- W2965510524 cites W2403089413 @default.
- W2965510524 cites W2410591237 @default.
- W2965510524 cites W2412205031 @default.
- W2965510524 cites W2416739439 @default.
- W2965510524 cites W2468203014 @default.
- W2965510524 cites W2475005008 @default.
- W2965510524 cites W2538244214 @default.
- W2965510524 cites W2541764002 @default.
- W2965510524 cites W2565516711 @default.
- W2965510524 cites W2577537809 @default.
- W2965510524 cites W2579302569 @default.
- W2965510524 cites W2592224809 @default.
- W2965510524 cites W2592517375 @default.
- W2965510524 cites W2593317637 @default.
- W2965510524 cites W2594681445 @default.
- W2965510524 cites W2608562242 @default.
- W2965510524 cites W2614600089 @default.
- W2965510524 cites W2614683497 @default.
- W2965510524 cites W2620858709 @default.
- W2965510524 cites W2621603956 @default.
- W2965510524 cites W2702787849 @default.
- W2965510524 cites W2742965730 @default.
- W2965510524 cites W2744272590 @default.
- W2965510524 cites W2744992965 @default.
- W2965510524 cites W2763474475 @default.
- W2965510524 cites W2770681778 @default.
- W2965510524 cites W2771375631 @default.
- W2965510524 cites W2783165089 @default.
- W2965510524 cites W2793091163 @default.
- W2965510524 cites W2796445688 @default.
- W2965510524 cites W2807001101 @default.
- W2965510524 cites W2807914764 @default.
- W2965510524 cites W2888525203 @default.
- W2965510524 cites W2897137065 @default.
- W2965510524 cites W2919115771 @default.
- W2965510524 cites W2943227802 @default.
- W2965510524 cites W4242972815 @default.
- W2965510524 cites W4244300305 @default.
- W2965510524 doi "https://doi.org/10.1109/tgrs.2019.2928715" @default.
- W2965510524 hasPublicationYear "2019" @default.
- W2965510524 type Work @default.
- W2965510524 sameAs 2965510524 @default.
- W2965510524 citedByCount "39" @default.
- W2965510524 countsByYear W29655105242019 @default.
- W2965510524 countsByYear W29655105242020 @default.
- W2965510524 countsByYear W29655105242021 @default.
- W2965510524 countsByYear W29655105242022 @default.
- W2965510524 countsByYear W29655105242023 @default.