Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965579662> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2965579662 endingPage "922" @default.
- W2965579662 startingPage "920" @default.
- W2965579662 abstract "Energy consumption has increased in recent decades at a rate ranging from 1.5% to 10% per year in the developed world. As a consequence, several efforts have been made to model energy consumption in order to achieve a better use of energy and to minimize environmental impact. Open problems in this area range from energy consumption forecasting to user profile mining, energy source planning, to transportation, among others. To address these problems, it is important to have suitable tools to model energy consumption data series, so that the analysts and CEOs can have knowledge about the underlying properties of the power demand in order to make high-level decisions. In this paper, we focus on the problem of energy consumption modelling, and provide a solution from the perspective of symbolic regression. More specifically, we develop hybrid genetic programming algorithms to find the algebraic expression that best models daily energy consumption in public buildings at the University of Granada as a testbed, and compare the benefits of Straight Line Programs with the classic tree representation used in symbolic regression. Regarding algorithm design, the outcomes of our experimentation suggest that Straight Line Programs outperform other representation models in the symbolic regression problems studied, and also that the hybridation with local search methods can improve the quality of the resulting algebraic expression. On the other hand, with regards to energy consumption modelling, our approach empirically demonstrates that symbolic regression can be a powerful tool to find underlying relationships between multivariate energy consumption data series." @default.
- W2965579662 created "2019-08-13" @default.
- W2965579662 creator A5041581707 @default.
- W2965579662 creator A5072241102 @default.
- W2965579662 creator A5073006299 @default.
- W2965579662 creator A5080744092 @default.
- W2965579662 date "2019-07-01" @default.
- W2965579662 modified "2023-10-16" @default.
- W2965579662 title "Introduction to the Special Section on Applying Machine Learning Systems for IoT Services in Industrial Informatics" @default.
- W2965579662 cites W2794355260 @default.
- W2965579662 cites W2795084385 @default.
- W2965579662 cites W2804503210 @default.
- W2965579662 cites W2810443361 @default.
- W2965579662 cites W2810521045 @default.
- W2965579662 cites W2810749629 @default.
- W2965579662 cites W2891246203 @default.
- W2965579662 cites W2892036933 @default.
- W2965579662 cites W2899516359 @default.
- W2965579662 doi "https://doi.org/10.1016/j.asoc.2019.05.002" @default.
- W2965579662 hasPublicationYear "2019" @default.
- W2965579662 type Work @default.
- W2965579662 sameAs 2965579662 @default.
- W2965579662 citedByCount "1" @default.
- W2965579662 countsByYear W29655796622021 @default.
- W2965579662 crossrefType "journal-article" @default.
- W2965579662 hasAuthorship W2965579662A5041581707 @default.
- W2965579662 hasAuthorship W2965579662A5072241102 @default.
- W2965579662 hasAuthorship W2965579662A5073006299 @default.
- W2965579662 hasAuthorship W2965579662A5080744092 @default.
- W2965579662 hasConcept C110332635 @default.
- W2965579662 hasConcept C119599485 @default.
- W2965579662 hasConcept C119857082 @default.
- W2965579662 hasConcept C124101348 @default.
- W2965579662 hasConcept C127413603 @default.
- W2965579662 hasConcept C13736549 @default.
- W2965579662 hasConcept C144024400 @default.
- W2965579662 hasConcept C154945302 @default.
- W2965579662 hasConcept C17744445 @default.
- W2965579662 hasConcept C199539241 @default.
- W2965579662 hasConcept C2776359362 @default.
- W2965579662 hasConcept C2776400721 @default.
- W2965579662 hasConcept C2780165032 @default.
- W2965579662 hasConcept C30772137 @default.
- W2965579662 hasConcept C36289849 @default.
- W2965579662 hasConcept C41008148 @default.
- W2965579662 hasConcept C94625758 @default.
- W2965579662 hasConceptScore W2965579662C110332635 @default.
- W2965579662 hasConceptScore W2965579662C119599485 @default.
- W2965579662 hasConceptScore W2965579662C119857082 @default.
- W2965579662 hasConceptScore W2965579662C124101348 @default.
- W2965579662 hasConceptScore W2965579662C127413603 @default.
- W2965579662 hasConceptScore W2965579662C13736549 @default.
- W2965579662 hasConceptScore W2965579662C144024400 @default.
- W2965579662 hasConceptScore W2965579662C154945302 @default.
- W2965579662 hasConceptScore W2965579662C17744445 @default.
- W2965579662 hasConceptScore W2965579662C199539241 @default.
- W2965579662 hasConceptScore W2965579662C2776359362 @default.
- W2965579662 hasConceptScore W2965579662C2776400721 @default.
- W2965579662 hasConceptScore W2965579662C2780165032 @default.
- W2965579662 hasConceptScore W2965579662C30772137 @default.
- W2965579662 hasConceptScore W2965579662C36289849 @default.
- W2965579662 hasConceptScore W2965579662C41008148 @default.
- W2965579662 hasConceptScore W2965579662C94625758 @default.
- W2965579662 hasLocation W29655796621 @default.
- W2965579662 hasOpenAccess W2965579662 @default.
- W2965579662 hasPrimaryLocation W29655796621 @default.
- W2965579662 hasRelatedWork W2938562256 @default.
- W2965579662 hasRelatedWork W2965579662 @default.
- W2965579662 hasRelatedWork W2977089467 @default.
- W2965579662 hasRelatedWork W3026742372 @default.
- W2965579662 hasRelatedWork W3083251540 @default.
- W2965579662 hasRelatedWork W4248722680 @default.
- W2965579662 hasRelatedWork W4284970887 @default.
- W2965579662 hasRelatedWork W4286461629 @default.
- W2965579662 hasRelatedWork W4385189360 @default.
- W2965579662 hasRelatedWork W2597297359 @default.
- W2965579662 hasVolume "80" @default.
- W2965579662 isParatext "false" @default.
- W2965579662 isRetracted "false" @default.
- W2965579662 magId "2965579662" @default.
- W2965579662 workType "article" @default.