Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965616462> ?p ?o ?g. }
- W2965616462 endingPage "1" @default.
- W2965616462 startingPage "1" @default.
- W2965616462 abstract "Hashtags are keywords describing a topic or a theme and are usually chosen by microblogging users. Hence, the hashtags can be used to categorize microblog posts. With the fast development of the social network, the task of recommending suitable hashtags has received considerable attention in recent years. Recently, most neural network methods have treated the task as a multi-class classification problem. In fact, users are constantly introducing new hashtags in a highly dynamic way. Treating the task as a multi-class classification problem with a fixed number of target categories does not allow the method to deal with the new hashtags. To address this problem, the task is reinterpreted as a matching problem and a novel co-attention memory network is proposed to represent the multimodal microblogs and hashtags. We utilize a co-attention mechanism to model the multimodal mircroblogs, and utilize the post history to represent the hashtags. Experimental results on a Twitter-based dataset demonstrated that the proposed method can achieve better performance than the current state-of-the-art methods that treat the task as a multi-class classification problem." @default.
- W2965616462 created "2019-08-13" @default.
- W2965616462 creator A5009730624 @default.
- W2965616462 creator A5019750053 @default.
- W2965616462 creator A5026984704 @default.
- W2965616462 creator A5044665993 @default.
- W2965616462 creator A5047514502 @default.
- W2965616462 creator A5088834359 @default.
- W2965616462 date "2019-01-01" @default.
- W2965616462 modified "2023-10-03" @default.
- W2965616462 title "Co-attention Memory Network for Multimodal Microblog's Hashtag Recommendation" @default.
- W2965616462 cites W1553232534 @default.
- W2965616462 cites W1683269307 @default.
- W2965616462 cites W1895577753 @default.
- W2965616462 cites W1905882502 @default.
- W2965616462 cites W1947481528 @default.
- W2965616462 cites W1966443646 @default.
- W2965616462 cites W1973897992 @default.
- W2965616462 cites W1989341178 @default.
- W2965616462 cites W2003018928 @default.
- W2965616462 cites W2027323723 @default.
- W2965616462 cites W2028593080 @default.
- W2965616462 cites W2029807880 @default.
- W2965616462 cites W2031237011 @default.
- W2965616462 cites W2040107208 @default.
- W2965616462 cites W2048508267 @default.
- W2965616462 cites W2052950171 @default.
- W2965616462 cites W2061761630 @default.
- W2965616462 cites W2075817192 @default.
- W2965616462 cites W2090041477 @default.
- W2965616462 cites W2092694516 @default.
- W2965616462 cites W2093219534 @default.
- W2965616462 cites W2094524282 @default.
- W2965616462 cites W2097726431 @default.
- W2965616462 cites W2103567420 @default.
- W2965616462 cites W2105547690 @default.
- W2965616462 cites W2112008792 @default.
- W2965616462 cites W2115568835 @default.
- W2965616462 cites W2124499489 @default.
- W2965616462 cites W2127785456 @default.
- W2965616462 cites W2132255457 @default.
- W2965616462 cites W2136189984 @default.
- W2965616462 cites W2165320068 @default.
- W2965616462 cites W2170414372 @default.
- W2965616462 cites W2171468534 @default.
- W2965616462 cites W2171645516 @default.
- W2965616462 cites W2188869342 @default.
- W2965616462 cites W2235388212 @default.
- W2965616462 cites W2739671343 @default.
- W2965616462 cites W2740062096 @default.
- W2965616462 cites W2741859754 @default.
- W2965616462 cites W2905260908 @default.
- W2965616462 cites W2962749469 @default.
- W2965616462 cites W2963448850 @default.
- W2965616462 cites W3122775348 @default.
- W2965616462 cites W4206827264 @default.
- W2965616462 cites W91766825 @default.
- W2965616462 doi "https://doi.org/10.1109/tkde.2019.2932406" @default.
- W2965616462 hasPublicationYear "2019" @default.
- W2965616462 type Work @default.
- W2965616462 sameAs 2965616462 @default.
- W2965616462 citedByCount "12" @default.
- W2965616462 countsByYear W29656164622020 @default.
- W2965616462 countsByYear W29656164622021 @default.
- W2965616462 countsByYear W29656164622022 @default.
- W2965616462 crossrefType "journal-article" @default.
- W2965616462 hasAuthorship W2965616462A5009730624 @default.
- W2965616462 hasAuthorship W2965616462A5019750053 @default.
- W2965616462 hasAuthorship W2965616462A5026984704 @default.
- W2965616462 hasAuthorship W2965616462A5044665993 @default.
- W2965616462 hasAuthorship W2965616462A5047514502 @default.
- W2965616462 hasAuthorship W2965616462A5088834359 @default.
- W2965616462 hasConcept C105795698 @default.
- W2965616462 hasConcept C119857082 @default.
- W2965616462 hasConcept C136764020 @default.
- W2965616462 hasConcept C143275388 @default.
- W2965616462 hasConcept C154945302 @default.
- W2965616462 hasConcept C162324750 @default.
- W2965616462 hasConcept C165064840 @default.
- W2965616462 hasConcept C187736073 @default.
- W2965616462 hasConcept C23123220 @default.
- W2965616462 hasConcept C2777212361 @default.
- W2965616462 hasConcept C2780451532 @default.
- W2965616462 hasConcept C33923547 @default.
- W2965616462 hasConcept C41008148 @default.
- W2965616462 hasConcept C4727928 @default.
- W2965616462 hasConcept C518677369 @default.
- W2965616462 hasConcept C94124525 @default.
- W2965616462 hasConceptScore W2965616462C105795698 @default.
- W2965616462 hasConceptScore W2965616462C119857082 @default.
- W2965616462 hasConceptScore W2965616462C136764020 @default.
- W2965616462 hasConceptScore W2965616462C143275388 @default.
- W2965616462 hasConceptScore W2965616462C154945302 @default.
- W2965616462 hasConceptScore W2965616462C162324750 @default.
- W2965616462 hasConceptScore W2965616462C165064840 @default.
- W2965616462 hasConceptScore W2965616462C187736073 @default.
- W2965616462 hasConceptScore W2965616462C23123220 @default.
- W2965616462 hasConceptScore W2965616462C2777212361 @default.