Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965748829> ?p ?o ?g. }
- W2965748829 endingPage "162" @default.
- W2965748829 startingPage "156" @default.
- W2965748829 abstract "Determination and characterization of resistance reactions of crops against fungal pathogens are essential to select resistant genotypes. In plant breeding, phenotyping of genotypes is realized by time consuming and expensive visual plant ratings. During resistance reactions and during pathogenesis plants initiate different structural and biochemical defence mechanisms, which partly affect the optical properties of plant organs. Recently, intensive research has been conducted to develop innovative optical methods for an assessment of compatible and incompatible plant pathogen interaction. These approaches, combining classical phytopathology or microbiology with technology driven methods - such as sensors, robotics, machine learning, and artificial intelligence - are summarized by the term digital phenotyping. In contrast to common visual rating, detection and assessment methods, optical sensors in combination with advanced data analysis methods are able to retrieve pathogen induced changes in the physiology of susceptible or resistant plants non-invasively and objectively. Phenotyping disease resistance aims different tasks. In an early breeding step, a qualitative assessment and characterization of specific resistance action is aimed to link it, for example, to a genetic marker. Later, during greenhouse and field screening, the assessment of the level of susceptibility of different genotypes is relevant. Within this review, recent advances of digital phenotyping technologies for the detection of subtle resistance reactions and resistance breeding are highlighted and methodological requirements are critically discussed." @default.
- W2965748829 created "2019-08-13" @default.
- W2965748829 creator A5002848278 @default.
- W2965748829 creator A5027430791 @default.
- W2965748829 creator A5037636074 @default.
- W2965748829 creator A5044006174 @default.
- W2965748829 creator A5053988311 @default.
- W2965748829 creator A5075904986 @default.
- W2965748829 creator A5080374854 @default.
- W2965748829 date "2019-08-01" @default.
- W2965748829 modified "2023-10-12" @default.
- W2965748829 title "Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!" @default.
- W2965748829 cites W1462825729 @default.
- W2965748829 cites W1571840503 @default.
- W2965748829 cites W1903987689 @default.
- W2965748829 cites W1973328229 @default.
- W2965748829 cites W1982026899 @default.
- W2965748829 cites W1985870845 @default.
- W2965748829 cites W2005867160 @default.
- W2965748829 cites W2025238960 @default.
- W2965748829 cites W2026021064 @default.
- W2965748829 cites W2044969783 @default.
- W2965748829 cites W2051908456 @default.
- W2965748829 cites W2067877300 @default.
- W2965748829 cites W2085916593 @default.
- W2965748829 cites W2086330580 @default.
- W2965748829 cites W2103959917 @default.
- W2965748829 cites W2104484780 @default.
- W2965748829 cites W2108358988 @default.
- W2965748829 cites W2114865230 @default.
- W2965748829 cites W2118105836 @default.
- W2965748829 cites W2134413733 @default.
- W2965748829 cites W2134469465 @default.
- W2965748829 cites W2137037625 @default.
- W2965748829 cites W2151002379 @default.
- W2965748829 cites W2159333108 @default.
- W2965748829 cites W2160038364 @default.
- W2965748829 cites W2161558103 @default.
- W2965748829 cites W2165462764 @default.
- W2965748829 cites W2185489349 @default.
- W2965748829 cites W2241764905 @default.
- W2965748829 cites W2467491686 @default.
- W2965748829 cites W2482903435 @default.
- W2965748829 cites W2513191602 @default.
- W2965748829 cites W2519984921 @default.
- W2965748829 cites W2520809084 @default.
- W2965748829 cites W2521457736 @default.
- W2965748829 cites W2537906254 @default.
- W2965748829 cites W2591664039 @default.
- W2965748829 cites W2729850190 @default.
- W2965748829 cites W2730356952 @default.
- W2965748829 cites W2737615274 @default.
- W2965748829 cites W2758810255 @default.
- W2965748829 cites W2789833233 @default.
- W2965748829 cites W2790739169 @default.
- W2965748829 cites W2800574443 @default.
- W2965748829 cites W2805740944 @default.
- W2965748829 cites W2808901071 @default.
- W2965748829 cites W2847206774 @default.
- W2965748829 cites W2868454551 @default.
- W2965748829 cites W2886359012 @default.
- W2965748829 cites W2889400155 @default.
- W2965748829 doi "https://doi.org/10.1016/j.pbi.2019.06.007" @default.
- W2965748829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31387067" @default.
- W2965748829 hasPublicationYear "2019" @default.
- W2965748829 type Work @default.
- W2965748829 sameAs 2965748829 @default.
- W2965748829 citedByCount "63" @default.
- W2965748829 countsByYear W29657488292019 @default.
- W2965748829 countsByYear W29657488292020 @default.
- W2965748829 countsByYear W29657488292021 @default.
- W2965748829 countsByYear W29657488292022 @default.
- W2965748829 countsByYear W29657488292023 @default.
- W2965748829 crossrefType "journal-article" @default.
- W2965748829 hasAuthorship W2965748829A5002848278 @default.
- W2965748829 hasAuthorship W2965748829A5027430791 @default.
- W2965748829 hasAuthorship W2965748829A5037636074 @default.
- W2965748829 hasAuthorship W2965748829A5044006174 @default.
- W2965748829 hasAuthorship W2965748829A5053988311 @default.
- W2965748829 hasAuthorship W2965748829A5075904986 @default.
- W2965748829 hasAuthorship W2965748829A5080374854 @default.
- W2965748829 hasConcept C104317684 @default.
- W2965748829 hasConcept C119857082 @default.
- W2965748829 hasConcept C127413603 @default.
- W2965748829 hasConcept C141231307 @default.
- W2965748829 hasConcept C150903083 @default.
- W2965748829 hasConcept C154945302 @default.
- W2965748829 hasConcept C159078339 @default.
- W2965748829 hasConcept C183696295 @default.
- W2965748829 hasConcept C189206191 @default.
- W2965748829 hasConcept C3019235130 @default.
- W2965748829 hasConcept C41008148 @default.
- W2965748829 hasConcept C54355233 @default.
- W2965748829 hasConcept C57473165 @default.
- W2965748829 hasConcept C6557445 @default.
- W2965748829 hasConcept C70721500 @default.
- W2965748829 hasConcept C86803240 @default.
- W2965748829 hasConcept C93678976 @default.