Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965782936> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2965782936 abstract "Pain is a sensation of physical discomfort which is caused by any kind of physical injury or illness and it is one of the most crucial factor for the patient's recovery. Although pain assessment can be done by simple observation and self-report, objectively it is a difficult task to accomplish. In recent past, several approaches have been utilized for pain recognition by researchers, However, existing state of art techniques have several drawbacks, such as using conventional handcraft feature engineering methods, which requires domain expertise and very deep convolutional neural network which are computationally expensive in terms of training, therefore requires high computational power. In this paper, we suggest that shallowing the convolutional network can also achieve competitive performance and reduce the computational burden at the same time. In view of this, we present a convolutional neural network architecture, which utilizes only three convolutional layers. Thus, having lesser parameters and computationally efficient network. Furthermore, the proposed CNN architecture has been evaluated on UNBC McMaster shoulder pain dataset. The experiment exhibits that the result of proposed CNN based approach has achieved 93.34 % overall accuracy for multiclass pain recognition. The performance signifies, that the proposed method outperformed the existing handcraft feature-based methods and gives competitive results with other deep convolutional neural network-based methods, which are computationally expensive." @default.
- W2965782936 created "2019-08-13" @default.
- W2965782936 creator A5058031822 @default.
- W2965782936 creator A5074193722 @default.
- W2965782936 date "2018-12-01" @default.
- W2965782936 modified "2023-10-17" @default.
- W2965782936 title "Automated Pain Severity Detection Using Convolutional Neural Network" @default.
- W2965782936 cites W1523493493 @default.
- W2965782936 cites W1590099432 @default.
- W2965782936 cites W1949888834 @default.
- W2965782936 cites W1955857676 @default.
- W2965782936 cites W2005733474 @default.
- W2965782936 cites W2025216571 @default.
- W2965782936 cites W2032618685 @default.
- W2965782936 cites W2048031067 @default.
- W2965782936 cites W2049640633 @default.
- W2965782936 cites W2077847255 @default.
- W2965782936 cites W2094077339 @default.
- W2965782936 cites W2098615198 @default.
- W2965782936 cites W2101545465 @default.
- W2965782936 cites W2106043670 @default.
- W2965782936 cites W2152826865 @default.
- W2965782936 cites W2587128043 @default.
- W2965782936 doi "https://doi.org/10.1109/ctems.2018.8769123" @default.
- W2965782936 hasPublicationYear "2018" @default.
- W2965782936 type Work @default.
- W2965782936 sameAs 2965782936 @default.
- W2965782936 citedByCount "3" @default.
- W2965782936 countsByYear W29657829362021 @default.
- W2965782936 countsByYear W29657829362022 @default.
- W2965782936 countsByYear W29657829362023 @default.
- W2965782936 crossrefType "proceedings-article" @default.
- W2965782936 hasAuthorship W2965782936A5058031822 @default.
- W2965782936 hasAuthorship W2965782936A5074193722 @default.
- W2965782936 hasConcept C108583219 @default.
- W2965782936 hasConcept C119857082 @default.
- W2965782936 hasConcept C138885662 @default.
- W2965782936 hasConcept C153180895 @default.
- W2965782936 hasConcept C154945302 @default.
- W2965782936 hasConcept C2776401178 @default.
- W2965782936 hasConcept C2778827112 @default.
- W2965782936 hasConcept C41008148 @default.
- W2965782936 hasConcept C41895202 @default.
- W2965782936 hasConcept C52622490 @default.
- W2965782936 hasConcept C81363708 @default.
- W2965782936 hasConceptScore W2965782936C108583219 @default.
- W2965782936 hasConceptScore W2965782936C119857082 @default.
- W2965782936 hasConceptScore W2965782936C138885662 @default.
- W2965782936 hasConceptScore W2965782936C153180895 @default.
- W2965782936 hasConceptScore W2965782936C154945302 @default.
- W2965782936 hasConceptScore W2965782936C2776401178 @default.
- W2965782936 hasConceptScore W2965782936C2778827112 @default.
- W2965782936 hasConceptScore W2965782936C41008148 @default.
- W2965782936 hasConceptScore W2965782936C41895202 @default.
- W2965782936 hasConceptScore W2965782936C52622490 @default.
- W2965782936 hasConceptScore W2965782936C81363708 @default.
- W2965782936 hasLocation W29657829361 @default.
- W2965782936 hasOpenAccess W2965782936 @default.
- W2965782936 hasPrimaryLocation W29657829361 @default.
- W2965782936 hasRelatedWork W2059299633 @default.
- W2965782936 hasRelatedWork W2279398222 @default.
- W2965782936 hasRelatedWork W2738221750 @default.
- W2965782936 hasRelatedWork W2773120646 @default.
- W2965782936 hasRelatedWork W3011074480 @default.
- W2965782936 hasRelatedWork W3156786002 @default.
- W2965782936 hasRelatedWork W4299822940 @default.
- W2965782936 hasRelatedWork W4366224123 @default.
- W2965782936 hasRelatedWork W4381487685 @default.
- W2965782936 hasRelatedWork W4381832759 @default.
- W2965782936 isParatext "false" @default.
- W2965782936 isRetracted "false" @default.
- W2965782936 magId "2965782936" @default.
- W2965782936 workType "article" @default.