Matches in SemOpenAlex for { <https://semopenalex.org/work/W2965907724> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2965907724 abstract "In the study, a low-cost acoustic system which classifies different roads using acoustic signal processing tool is proposed (group1 road types: asphalt, gravel, stony and snowy road; group2 road types: asphalt data with car pass noise, asphalt data with rain noise, asphalt data with tire squeal noise). Thus it is aimed to estimate road/tire friction forces using slip ratio/friction curve in the active safety systems of the automobiles. Because friction forces cannot be measured directly and it can be only observed or estimated. In the study, acoustic data features which are linear predictive coding (LPC), power spectrum coefficients (PSC) and mel-frequency cepstrum coefficients (MFCC) are used for the acoustic signal processing methods with minimum variance and maximum distance principle. The features are extracted using time windows 0.1 second as the best representative window of signal properties. The classification process is also executed by support vector machine (SVM), artificial neural network (ANN), K-nearest neighbors (KNN) algorithms and compared to different road types. The most important difference of this study from our previous studies is that it compares performances of these three classification methods for different feature vectors obtained from different road conditions and indicates that the KNN is better method than SVM and ANN methods for the acoustic road type classification. According to the results, the KNN method classifies group1 road data with %90 accuracy rate and group2 road data with % 100 accuracy rate." @default.
- W2965907724 created "2019-08-13" @default.
- W2965907724 creator A5012618371 @default.
- W2965907724 creator A5087520182 @default.
- W2965907724 date "2019-07-01" @default.
- W2965907724 modified "2023-10-18" @default.
- W2965907724 title "Performance Analysis of SVM, ANN and KNN Methods for Acoustic Road-Type Classification" @default.
- W2965907724 cites W110900801 @default.
- W2965907724 cites W1840780516 @default.
- W2965907724 cites W1981246009 @default.
- W2965907724 cites W2013221702 @default.
- W2965907724 cites W2027636547 @default.
- W2965907724 cites W2081513612 @default.
- W2965907724 cites W2086997823 @default.
- W2965907724 cites W2087397913 @default.
- W2965907724 cites W2786428026 @default.
- W2965907724 cites W2849937493 @default.
- W2965907724 doi "https://doi.org/10.1109/inista.2019.8778247" @default.
- W2965907724 hasPublicationYear "2019" @default.
- W2965907724 type Work @default.
- W2965907724 sameAs 2965907724 @default.
- W2965907724 citedByCount "2" @default.
- W2965907724 countsByYear W29659077242022 @default.
- W2965907724 countsByYear W29659077242023 @default.
- W2965907724 crossrefType "proceedings-article" @default.
- W2965907724 hasAuthorship W2965907724A5012618371 @default.
- W2965907724 hasAuthorship W2965907724A5087520182 @default.
- W2965907724 hasConcept C113238511 @default.
- W2965907724 hasConcept C115961682 @default.
- W2965907724 hasConcept C12267149 @default.
- W2965907724 hasConcept C151989614 @default.
- W2965907724 hasConcept C153180895 @default.
- W2965907724 hasConcept C154945302 @default.
- W2965907724 hasConcept C28490314 @default.
- W2965907724 hasConcept C41008148 @default.
- W2965907724 hasConcept C50644808 @default.
- W2965907724 hasConcept C52622490 @default.
- W2965907724 hasConcept C99498987 @default.
- W2965907724 hasConceptScore W2965907724C113238511 @default.
- W2965907724 hasConceptScore W2965907724C115961682 @default.
- W2965907724 hasConceptScore W2965907724C12267149 @default.
- W2965907724 hasConceptScore W2965907724C151989614 @default.
- W2965907724 hasConceptScore W2965907724C153180895 @default.
- W2965907724 hasConceptScore W2965907724C154945302 @default.
- W2965907724 hasConceptScore W2965907724C28490314 @default.
- W2965907724 hasConceptScore W2965907724C41008148 @default.
- W2965907724 hasConceptScore W2965907724C50644808 @default.
- W2965907724 hasConceptScore W2965907724C52622490 @default.
- W2965907724 hasConceptScore W2965907724C99498987 @default.
- W2965907724 hasLocation W29659077241 @default.
- W2965907724 hasOpenAccess W2965907724 @default.
- W2965907724 hasPrimaryLocation W29659077241 @default.
- W2965907724 hasRelatedWork W1902766772 @default.
- W2965907724 hasRelatedWork W2126100045 @default.
- W2965907724 hasRelatedWork W2146076056 @default.
- W2965907724 hasRelatedWork W2156566403 @default.
- W2965907724 hasRelatedWork W2336974148 @default.
- W2965907724 hasRelatedWork W2381773606 @default.
- W2965907724 hasRelatedWork W2433029016 @default.
- W2965907724 hasRelatedWork W4225360039 @default.
- W2965907724 hasRelatedWork W2187500075 @default.
- W2965907724 hasRelatedWork W2345184372 @default.
- W2965907724 isParatext "false" @default.
- W2965907724 isRetracted "false" @default.
- W2965907724 magId "2965907724" @default.
- W2965907724 workType "article" @default.