Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966005396> ?p ?o ?g. }
- W2966005396 abstract "Abstract Additive manufacturing (AM) is a new paradigm in design-driven build of customized products. Nonetheless, mass customization and low-volume production make the AM quality assurance extremely challenging. Advanced imaging provides an unprecedented opportunity to increase information visibility, cope with the product complexity, and enable on-the-fly quality control in AM. However, in situ images of a customized AM build show a high level of layer-to-layer geometry variation, which hampers the use of powerful image-based learning methods such as deep neural networks (DNNs) for flaw detection. Very little has been done on deep learning of variant geometry for image-guided process monitoring and control. The proposed research is aimed at filling this gap by developing a novel machine learning approach that is focused on variant geometry in each layer of the AM build, namely region of interests, for the characterization and detection of layerwise flaws. Specifically, we leverage the computer-aided design (CAD) file to perform shape-to-image registration and to delineate the regions of interest in layerwise images. Next, a hierarchical dyadic partitioning methodology is developed to split layer-to-layer regions of interest into subregions with the same number of pixels to provide freeform geometry analysis. Then, we propose a semiparametric model to characterize the complex spatial patterns in each customized subregion and boost the computational speed. Finally, a DNN model is designed to learn variant geometry in layerwise imaging profiles and detect fine-grained information of flaws. Experimental results show that the proposed deep learning methodology is highly effective to detect flaws in each layer with an accuracy of 92.50 ± 1.03%. This provides a significant opportunity to reduce interlayer variation in AM prior to completion of a build. The proposed methodology can also be generally applicable in a variety of engineering and medical domains that entail customized design, variant geometry, and image-guided process control." @default.
- W2966005396 created "2019-08-13" @default.
- W2966005396 creator A5044911788 @default.
- W2966005396 creator A5058788547 @default.
- W2966005396 creator A5062699999 @default.
- W2966005396 creator A5089837205 @default.
- W2966005396 creator A5090733051 @default.
- W2966005396 date "2019-09-18" @default.
- W2966005396 modified "2023-10-15" @default.
- W2966005396 title "Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control" @default.
- W2966005396 cites W1551071722 @default.
- W2966005396 cites W1986149296 @default.
- W2966005396 cites W1988983502 @default.
- W2966005396 cites W2003514921 @default.
- W2966005396 cites W2034567503 @default.
- W2966005396 cites W2061768597 @default.
- W2966005396 cites W2066240202 @default.
- W2966005396 cites W2148430292 @default.
- W2966005396 cites W2150593711 @default.
- W2966005396 cites W2250894080 @default.
- W2966005396 cites W2272286915 @default.
- W2966005396 cites W2515744457 @default.
- W2966005396 cites W2537271840 @default.
- W2966005396 cites W2567926709 @default.
- W2966005396 cites W2584508145 @default.
- W2966005396 cites W2590124693 @default.
- W2966005396 cites W2736984982 @default.
- W2966005396 cites W2746325398 @default.
- W2966005396 cites W2753947513 @default.
- W2966005396 cites W2763594774 @default.
- W2966005396 cites W2766003497 @default.
- W2966005396 cites W2804975402 @default.
- W2966005396 cites W2809775572 @default.
- W2966005396 cites W2884290506 @default.
- W2966005396 cites W2884691768 @default.
- W2966005396 cites W2895046268 @default.
- W2966005396 cites W2902776370 @default.
- W2966005396 cites W2912631338 @default.
- W2966005396 cites W2943318449 @default.
- W2966005396 cites W2947580351 @default.
- W2966005396 cites W4235760779 @default.
- W2966005396 cites W4249271370 @default.
- W2966005396 cites W646637805 @default.
- W2966005396 doi "https://doi.org/10.1115/1.4044420" @default.
- W2966005396 hasPublicationYear "2019" @default.
- W2966005396 type Work @default.
- W2966005396 sameAs 2966005396 @default.
- W2966005396 citedByCount "56" @default.
- W2966005396 countsByYear W29660053962019 @default.
- W2966005396 countsByYear W29660053962020 @default.
- W2966005396 countsByYear W29660053962021 @default.
- W2966005396 countsByYear W29660053962022 @default.
- W2966005396 countsByYear W29660053962023 @default.
- W2966005396 crossrefType "journal-article" @default.
- W2966005396 hasAuthorship W2966005396A5044911788 @default.
- W2966005396 hasAuthorship W2966005396A5058788547 @default.
- W2966005396 hasAuthorship W2966005396A5062699999 @default.
- W2966005396 hasAuthorship W2966005396A5089837205 @default.
- W2966005396 hasAuthorship W2966005396A5090733051 @default.
- W2966005396 hasConcept C106436119 @default.
- W2966005396 hasConcept C108583219 @default.
- W2966005396 hasConcept C119857082 @default.
- W2966005396 hasConcept C127413603 @default.
- W2966005396 hasConcept C136764020 @default.
- W2966005396 hasConcept C153083717 @default.
- W2966005396 hasConcept C154945302 @default.
- W2966005396 hasConcept C160633673 @default.
- W2966005396 hasConcept C183003079 @default.
- W2966005396 hasConcept C194789388 @default.
- W2966005396 hasConcept C199639397 @default.
- W2966005396 hasConcept C21547014 @default.
- W2966005396 hasConcept C2778618615 @default.
- W2966005396 hasConcept C31972630 @default.
- W2966005396 hasConcept C41008148 @default.
- W2966005396 hasConcept C50644808 @default.
- W2966005396 hasConcept C72414096 @default.
- W2966005396 hasConceptScore W2966005396C106436119 @default.
- W2966005396 hasConceptScore W2966005396C108583219 @default.
- W2966005396 hasConceptScore W2966005396C119857082 @default.
- W2966005396 hasConceptScore W2966005396C127413603 @default.
- W2966005396 hasConceptScore W2966005396C136764020 @default.
- W2966005396 hasConceptScore W2966005396C153083717 @default.
- W2966005396 hasConceptScore W2966005396C154945302 @default.
- W2966005396 hasConceptScore W2966005396C160633673 @default.
- W2966005396 hasConceptScore W2966005396C183003079 @default.
- W2966005396 hasConceptScore W2966005396C194789388 @default.
- W2966005396 hasConceptScore W2966005396C199639397 @default.
- W2966005396 hasConceptScore W2966005396C21547014 @default.
- W2966005396 hasConceptScore W2966005396C2778618615 @default.
- W2966005396 hasConceptScore W2966005396C31972630 @default.
- W2966005396 hasConceptScore W2966005396C41008148 @default.
- W2966005396 hasConceptScore W2966005396C50644808 @default.
- W2966005396 hasConceptScore W2966005396C72414096 @default.
- W2966005396 hasIssue "11" @default.
- W2966005396 hasLocation W29660053961 @default.
- W2966005396 hasOpenAccess W2966005396 @default.
- W2966005396 hasPrimaryLocation W29660053961 @default.
- W2966005396 hasRelatedWork W2349404871 @default.
- W2966005396 hasRelatedWork W2358528700 @default.
- W2966005396 hasRelatedWork W2360874376 @default.