Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966098389> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2966098389 endingPage "254" @default.
- W2966098389 startingPage "239" @default.
- W2966098389 abstract "Internet-of-Things (IoT) devices that are limited in power and processing are susceptible to physical layer (PHY) spoofing (signal exploitation) attacks owing to their inability to implement a full-blown protocol stack for security. The overwhelming adoption of multicarrier techniques such as orthogonal frequency division multiplexing (OFDM) for the PHY layer makes IoT devices further vulnerable to PHY spoofing attacks. These attacks which aim at injecting bogus/spurious data into the receiver, involve inferring transmission parameters and finding PHY characteristics of the transmitted signals so as to spoof the received signal. Non-contiguous (NC) OFDM systems have been argued to have low probability of exploitation (LPE) characteristics against classic attacks based on cyclostationary analysis, and the corresponding PHY has been deemed to be secure. However, with the advent of machine learning (ML) algorithms, adversaries can devise data-driven attacks to compromise such systems. It is in this vein that PHY spoofing performance of adversaries equipped with supervised and unsupervised ML tools are investigated in this paper. The supervised ML approach is based on deep neural networks (DNN) while the unsupervised one employs variational autoencoders (VAEs). In particular, VAEs are shown to be capable of learning representations from NC-OFDM signals related to their PHY characteristics such as frequency pattern and modulation scheme, which are useful for PHY spoofing. In addition, a new metric based on the disentanglement principle is proposed to measure the quality of such learned representations. Simulation results demonstrate that the performance of the spoofing adversaries highly depends on the subcarriers' allocation patterns. Particularly, it is shown that utilizing a random subcarrier occupancy pattern secures NC-OFDM systems against ML-based attacks." @default.
- W2966098389 created "2019-08-13" @default.
- W2966098389 creator A5001332634 @default.
- W2966098389 creator A5028718006 @default.
- W2966098389 creator A5055303802 @default.
- W2966098389 date "2021-03-01" @default.
- W2966098389 modified "2023-09-23" @default.
- W2966098389 title "Learning-Aided Physical Layer Attacks Against Multicarrier Communications in IoT" @default.
- W2966098389 cites W1963614665 @default.
- W2966098389 cites W2048272888 @default.
- W2966098389 cites W2068574308 @default.
- W2966098389 cites W2120188593 @default.
- W2966098389 cites W2135575309 @default.
- W2966098389 cites W2144333904 @default.
- W2966098389 cites W2146080444 @default.
- W2966098389 cites W2153644609 @default.
- W2966098389 cites W2166944917 @default.
- W2966098389 cites W2561314843 @default.
- W2966098389 cites W2597831797 @default.
- W2966098389 cites W2734408173 @default.
- W2966098389 cites W2736068844 @default.
- W2966098389 cites W2893451531 @default.
- W2966098389 cites W2962694065 @default.
- W2966098389 cites W2963190722 @default.
- W2966098389 cites W2963490111 @default.
- W2966098389 cites W3105108969 @default.
- W2966098389 doi "https://doi.org/10.1109/tccn.2020.2990657" @default.
- W2966098389 hasPublicationYear "2021" @default.
- W2966098389 type Work @default.
- W2966098389 sameAs 2966098389 @default.
- W2966098389 citedByCount "5" @default.
- W2966098389 countsByYear W29660983892022 @default.
- W2966098389 countsByYear W29660983892023 @default.
- W2966098389 crossrefType "journal-article" @default.
- W2966098389 hasAuthorship W2966098389A5001332634 @default.
- W2966098389 hasAuthorship W2966098389A5028718006 @default.
- W2966098389 hasAuthorship W2966098389A5055303802 @default.
- W2966098389 hasBestOaLocation W29660983891 @default.
- W2966098389 hasConcept C127162648 @default.
- W2966098389 hasConcept C167900197 @default.
- W2966098389 hasConcept C19247436 @default.
- W2966098389 hasConcept C31258907 @default.
- W2966098389 hasConcept C40409654 @default.
- W2966098389 hasConcept C41008148 @default.
- W2966098389 hasConcept C41918916 @default.
- W2966098389 hasConcept C555944384 @default.
- W2966098389 hasConcept C76155785 @default.
- W2966098389 hasConcept C79403827 @default.
- W2966098389 hasConceptScore W2966098389C127162648 @default.
- W2966098389 hasConceptScore W2966098389C167900197 @default.
- W2966098389 hasConceptScore W2966098389C19247436 @default.
- W2966098389 hasConceptScore W2966098389C31258907 @default.
- W2966098389 hasConceptScore W2966098389C40409654 @default.
- W2966098389 hasConceptScore W2966098389C41008148 @default.
- W2966098389 hasConceptScore W2966098389C41918916 @default.
- W2966098389 hasConceptScore W2966098389C555944384 @default.
- W2966098389 hasConceptScore W2966098389C76155785 @default.
- W2966098389 hasConceptScore W2966098389C79403827 @default.
- W2966098389 hasFunder F4320306076 @default.
- W2966098389 hasIssue "1" @default.
- W2966098389 hasLocation W29660983891 @default.
- W2966098389 hasLocation W29660983892 @default.
- W2966098389 hasLocation W29660983893 @default.
- W2966098389 hasOpenAccess W2966098389 @default.
- W2966098389 hasPrimaryLocation W29660983891 @default.
- W2966098389 hasRelatedWork W2060114550 @default.
- W2966098389 hasRelatedWork W2090705947 @default.
- W2966098389 hasRelatedWork W2100338777 @default.
- W2966098389 hasRelatedWork W2151832283 @default.
- W2966098389 hasRelatedWork W2151833482 @default.
- W2966098389 hasRelatedWork W2731922852 @default.
- W2966098389 hasRelatedWork W29297656 @default.
- W2966098389 hasRelatedWork W2949605195 @default.
- W2966098389 hasRelatedWork W2966098389 @default.
- W2966098389 hasRelatedWork W4302779852 @default.
- W2966098389 hasVolume "7" @default.
- W2966098389 isParatext "false" @default.
- W2966098389 isRetracted "false" @default.
- W2966098389 magId "2966098389" @default.
- W2966098389 workType "article" @default.