Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966200082> ?p ?o ?g. }
- W2966200082 endingPage "20519" @default.
- W2966200082 startingPage "20519" @default.
- W2966200082 abstract "Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides significant practical and theoretical improvements in their architecture, their effectiveness is built on the existence of the flexible pre-trained models which generalize well to novel tasks and handle the problem of having small set of dermoscopic data. However, existing works pay little attention to exploring the benefits of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic images. Practically, it has been found that integrating multi-layer features has significant potential for improving performance of any pattern recognition task. In this paper, we developed a robust CAD system based on transfer learning and multi-layer feature fusion network to diagnose complex skin diseases. It is a convenient approach in terms of overfitting prevention, convergence speed and high morphological feature similarity processing. Our research focuses exclusively on obtaining optimal performance with addressing the various gaps in the skin pattern recognition area. For validation and comparison purposes, the proposed approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition precision compared with fully trained CNN models, fine-tuning process, single CNN model and other related works. Therefore, the study demonstrates that our proposed approach can dramatically improve the performance of CAD systems which are based on the conventional recognition and classification algorithms for skin lesion recognition in dermoscopic data." @default.
- W2966200082 created "2019-08-13" @default.
- W2966200082 creator A5028545794 @default.
- W2966200082 creator A5059094645 @default.
- W2966200082 date "2020-05-04" @default.
- W2966200082 modified "2023-10-16" @default.
- W2966200082 title "Correction to: Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images" @default.
- W2966200082 cites W1524680991 @default.
- W2966200082 cites W1601970208 @default.
- W2966200082 cites W1884191083 @default.
- W2966200082 cites W1920702274 @default.
- W2966200082 cites W1942214758 @default.
- W2966200082 cites W1975477163 @default.
- W2966200082 cites W1991607872 @default.
- W2966200082 cites W2001808904 @default.
- W2966200082 cites W2043911909 @default.
- W2966200082 cites W2057401925 @default.
- W2966200082 cites W2084578168 @default.
- W2966200082 cites W2112796928 @default.
- W2966200082 cites W2117225622 @default.
- W2966200082 cites W2146502635 @default.
- W2966200082 cites W2151785814 @default.
- W2966200082 cites W2155893237 @default.
- W2966200082 cites W2160921898 @default.
- W2966200082 cites W2162390675 @default.
- W2966200082 cites W2164370980 @default.
- W2966200082 cites W2176950688 @default.
- W2966200082 cites W2194775991 @default.
- W2966200082 cites W2214352687 @default.
- W2966200082 cites W2237229181 @default.
- W2966200082 cites W2246816529 @default.
- W2966200082 cites W2253429366 @default.
- W2966200082 cites W2294712740 @default.
- W2966200082 cites W2296606109 @default.
- W2966200082 cites W2319888919 @default.
- W2966200082 cites W2326180695 @default.
- W2966200082 cites W2329270169 @default.
- W2966200082 cites W2334806870 @default.
- W2966200082 cites W2346705140 @default.
- W2966200082 cites W2417723176 @default.
- W2966200082 cites W2474574787 @default.
- W2966200082 cites W2510597476 @default.
- W2966200082 cites W2534858547 @default.
- W2966200082 cites W2552561459 @default.
- W2966200082 cites W2560438559 @default.
- W2966200082 cites W2565516711 @default.
- W2966200082 cites W2567001798 @default.
- W2966200082 cites W2575615142 @default.
- W2966200082 cites W2581082771 @default.
- W2966200082 cites W2592160412 @default.
- W2966200082 cites W2592888171 @default.
- W2966200082 cites W2610796455 @default.
- W2966200082 cites W2618530766 @default.
- W2966200082 cites W2725008604 @default.
- W2966200082 cites W2727875856 @default.
- W2966200082 cites W2730619644 @default.
- W2966200082 cites W2739892638 @default.
- W2966200082 cites W2742180631 @default.
- W2966200082 cites W2743490147 @default.
- W2966200082 cites W2749507674 @default.
- W2966200082 cites W2755930428 @default.
- W2966200082 cites W2756129851 @default.
- W2966200082 cites W2766123424 @default.
- W2966200082 cites W2766671789 @default.
- W2966200082 cites W2773980160 @default.
- W2966200082 cites W2775196165 @default.
- W2966200082 cites W2778722845 @default.
- W2966200082 cites W2779330728 @default.
- W2966200082 cites W2783710041 @default.
- W2966200082 cites W2786147899 @default.
- W2966200082 cites W2787868933 @default.
- W2966200082 cites W2788663687 @default.
- W2966200082 cites W2788686457 @default.
- W2966200082 cites W2790571983 @default.
- W2966200082 cites W2791282053 @default.
- W2966200082 cites W2791881562 @default.
- W2966200082 cites W2792319557 @default.
- W2966200082 cites W2792411327 @default.
- W2966200082 cites W2793909072 @default.
- W2966200082 cites W2794820119 @default.
- W2966200082 cites W2802097555 @default.
- W2966200082 cites W2805155144 @default.
- W2966200082 cites W2806578165 @default.
- W2966200082 cites W2807190811 @default.
- W2966200082 cites W2807813638 @default.
- W2966200082 cites W2808402757 @default.
- W2966200082 cites W2808973857 @default.
- W2966200082 cites W2809150600 @default.
- W2966200082 cites W2809980452 @default.
- W2966200082 cites W2810979746 @default.
- W2966200082 cites W2811014034 @default.
- W2966200082 cites W2811112224 @default.
- W2966200082 cites W2811483498 @default.
- W2966200082 cites W2883279456 @default.
- W2966200082 cites W2884107328 @default.
- W2966200082 cites W2884697329 @default.
- W2966200082 cites W2885139383 @default.
- W2966200082 cites W2885478230 @default.