Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966253572> ?p ?o ?g. }
- W2966253572 abstract "This paper outlines a methodology for semi-parametric spatio-temporal modelling of data which is dense in time but sparse in space, obtained from a split panel design, the most feasible approach to covering space and time with limited equipment. The data are hourly averaged particle number concentration (PNC) and were collected, as part of the Ultrafine Particles from Transport Emissions and Child Health (UPTECH) project. Two weeks of continuous measurements were taken at each of a number of government primary schools in the Brisbane Metropolitan Area. The monitoring equipment was taken to each school sequentially. The school data are augmented by data from long term monitoring stations at three locations in Brisbane, Australia. Fitting the model helps describe the spatial and temporal variability at a subset of the UPTECH schools and the long-term monitoring sites. The temporal variation is modelled hierarchically with penalised random walk terms, one common to all sites and a term accounting for the remaining temporal trend at each site. Parameter estimates and their uncertainty are computed in a computationally efficient approximate Bayesian inference environment, R-INLA. The temporal part of the model explains daily and weekly cycles in PNC at the schools, which can be used to estimate the exposure of school children to ultrafine particles (UFPs) emitted by vehicles. At each school and long-term monitoring site, peaks in PNC can be attributed to the morning and afternoon rush hour traffic and new particle formation events. The spatial component of the model describes the school to school variation in mean PNC at each school and within each school ground. It is shown how the spatial model can be expanded to identify spatial patterns at the city scale with the inclusion of more spatial locations." @default.
- W2966253572 created "2019-08-13" @default.
- W2966253572 creator A5001588690 @default.
- W2966253572 creator A5012388145 @default.
- W2966253572 creator A5029145291 @default.
- W2966253572 creator A5043305963 @default.
- W2966253572 creator A5066175060 @default.
- W2966253572 creator A5071672056 @default.
- W2966253572 date "2019-08-04" @default.
- W2966253572 modified "2023-10-15" @default.
- W2966253572 title "A Bayesian spatiotemporal model of panel design data: Airborne particle number concentration in Brisbane, Australia" @default.
- W2966253572 cites W143236119 @default.
- W2966253572 cites W1494281971 @default.
- W2966253572 cites W1816516507 @default.
- W2966253572 cites W1837874438 @default.
- W2966253572 cites W1959495806 @default.
- W2966253572 cites W1975354406 @default.
- W2966253572 cites W1977147382 @default.
- W2966253572 cites W1978386307 @default.
- W2966253572 cites W1981080716 @default.
- W2966253572 cites W1990420052 @default.
- W2966253572 cites W2003746633 @default.
- W2966253572 cites W2004807582 @default.
- W2966253572 cites W2013627498 @default.
- W2966253572 cites W2023475508 @default.
- W2966253572 cites W2029846212 @default.
- W2966253572 cites W2031258441 @default.
- W2966253572 cites W2031448759 @default.
- W2966253572 cites W2038151662 @default.
- W2966253572 cites W2063683115 @default.
- W2966253572 cites W2100805591 @default.
- W2966253572 cites W2104278142 @default.
- W2966253572 cites W2109748507 @default.
- W2966253572 cites W2114220616 @default.
- W2966253572 cites W2118451900 @default.
- W2966253572 cites W2119047368 @default.
- W2966253572 cites W2144898279 @default.
- W2966253572 cites W2155720527 @default.
- W2966253572 cites W2162870748 @default.
- W2966253572 cites W2171151659 @default.
- W2966253572 cites W2195818704 @default.
- W2966253572 cites W2230870989 @default.
- W2966253572 cites W2496675188 @default.
- W2966253572 cites W2790043170 @default.
- W2966253572 cites W2904816695 @default.
- W2966253572 cites W3100437157 @default.
- W2966253572 cites W4301341693 @default.
- W2966253572 doi "https://doi.org/10.1002/env.2597" @default.
- W2966253572 hasPublicationYear "2019" @default.
- W2966253572 type Work @default.
- W2966253572 sameAs 2966253572 @default.
- W2966253572 citedByCount "5" @default.
- W2966253572 countsByYear W29662535722020 @default.
- W2966253572 countsByYear W29662535722021 @default.
- W2966253572 countsByYear W29662535722022 @default.
- W2966253572 crossrefType "journal-article" @default.
- W2966253572 hasAuthorship W2966253572A5001588690 @default.
- W2966253572 hasAuthorship W2966253572A5012388145 @default.
- W2966253572 hasAuthorship W2966253572A5029145291 @default.
- W2966253572 hasAuthorship W2966253572A5043305963 @default.
- W2966253572 hasAuthorship W2966253572A5066175060 @default.
- W2966253572 hasAuthorship W2966253572A5071672056 @default.
- W2966253572 hasBestOaLocation W29662535722 @default.
- W2966253572 hasConcept C105795698 @default.
- W2966253572 hasConcept C107673813 @default.
- W2966253572 hasConcept C121332964 @default.
- W2966253572 hasConcept C126322002 @default.
- W2966253572 hasConcept C127413603 @default.
- W2966253572 hasConcept C150032891 @default.
- W2966253572 hasConcept C153294291 @default.
- W2966253572 hasConcept C154945302 @default.
- W2966253572 hasConcept C158739034 @default.
- W2966253572 hasConcept C160234255 @default.
- W2966253572 hasConcept C166957645 @default.
- W2966253572 hasConcept C19720800 @default.
- W2966253572 hasConcept C205649164 @default.
- W2966253572 hasConcept C2776214188 @default.
- W2966253572 hasConcept C33923547 @default.
- W2966253572 hasConcept C39432304 @default.
- W2966253572 hasConcept C41008148 @default.
- W2966253572 hasConcept C42360764 @default.
- W2966253572 hasConcept C61797465 @default.
- W2966253572 hasConcept C62520636 @default.
- W2966253572 hasConcept C71924100 @default.
- W2966253572 hasConcept C74412414 @default.
- W2966253572 hasConcept C82706917 @default.
- W2966253572 hasConcept C94747663 @default.
- W2966253572 hasConcept C96402334 @default.
- W2966253572 hasConceptScore W2966253572C105795698 @default.
- W2966253572 hasConceptScore W2966253572C107673813 @default.
- W2966253572 hasConceptScore W2966253572C121332964 @default.
- W2966253572 hasConceptScore W2966253572C126322002 @default.
- W2966253572 hasConceptScore W2966253572C127413603 @default.
- W2966253572 hasConceptScore W2966253572C150032891 @default.
- W2966253572 hasConceptScore W2966253572C153294291 @default.
- W2966253572 hasConceptScore W2966253572C154945302 @default.
- W2966253572 hasConceptScore W2966253572C158739034 @default.
- W2966253572 hasConceptScore W2966253572C160234255 @default.
- W2966253572 hasConceptScore W2966253572C166957645 @default.
- W2966253572 hasConceptScore W2966253572C19720800 @default.