Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966281909> ?p ?o ?g. }
- W2966281909 endingPage "738" @default.
- W2966281909 startingPage "727" @default.
- W2966281909 abstract "Medical Imaging Computer Aided Diagnosis (CAD) systems could support physicians in several fields and recently are also applied in histopathology. The goal of this work is to design and test a novel CAD system module for the discrimination between glomeruli with a sclerotic and non-sclerotic condition, through the elaboration of histological images. The dataset was constituted by 26 kidney biopsies coming from 19 donors with Periodic Acid Schiff (PAS) staining. Preparation, digital acquisition and glomeruli annotations have been conducted by experts from the Department of Emergency and Organ Transplantation (DETO) of the University of Bari Aldo Moro (Italy). Starting from the annotated Regions Of Interest (ROIs), several feature extraction techniques were evaluated. Feature reduction and shallow artificial neural network were used for discriminating between the glomeruli classes. The mean and the best performances of the best ANN architecture were evaluated on an independent dataset. Metric comparison and analysis were performed to face the unbalanced dataset problem. Results on the test set asses that the proposed workflow, from the feature extraction to the supervised ANN approach, is consistent and reveals good performance in discriminating sclerotic and non-sclerotic glomeruli." @default.
- W2966281909 created "2019-08-13" @default.
- W2966281909 creator A5001391327 @default.
- W2966281909 creator A5040642389 @default.
- W2966281909 creator A5045287189 @default.
- W2966281909 creator A5050013557 @default.
- W2966281909 creator A5052685137 @default.
- W2966281909 creator A5058629014 @default.
- W2966281909 creator A5058770707 @default.
- W2966281909 creator A5059086195 @default.
- W2966281909 creator A5061589971 @default.
- W2966281909 creator A5065582823 @default.
- W2966281909 creator A5076646275 @default.
- W2966281909 date "2019-01-01" @default.
- W2966281909 modified "2023-09-23" @default.
- W2966281909 title "An Innovative Neural Network Framework for Glomerulus Classification Based on Morphological and Texture Features Evaluated in Histological Images of Kidney Biopsy" @default.
- W2966281909 cites W1672123165 @default.
- W2966281909 cites W1967186380 @default.
- W2966281909 cites W1971031134 @default.
- W2966281909 cites W2012074933 @default.
- W2966281909 cites W2026399893 @default.
- W2966281909 cites W2070536752 @default.
- W2966281909 cites W2076843879 @default.
- W2966281909 cites W2097655989 @default.
- W2966281909 cites W2109553965 @default.
- W2966281909 cites W2116040950 @default.
- W2966281909 cites W2150593711 @default.
- W2966281909 cites W2151745025 @default.
- W2966281909 cites W2163239067 @default.
- W2966281909 cites W2252285100 @default.
- W2966281909 cites W2550387302 @default.
- W2966281909 cites W2592921295 @default.
- W2966281909 cites W2771169143 @default.
- W2966281909 cites W2791697444 @default.
- W2966281909 cites W2886269540 @default.
- W2966281909 cites W2963896025 @default.
- W2966281909 doi "https://doi.org/10.1007/978-3-030-26766-7_66" @default.
- W2966281909 hasPublicationYear "2019" @default.
- W2966281909 type Work @default.
- W2966281909 sameAs 2966281909 @default.
- W2966281909 citedByCount "6" @default.
- W2966281909 countsByYear W29662819092020 @default.
- W2966281909 countsByYear W29662819092022 @default.
- W2966281909 countsByYear W29662819092023 @default.
- W2966281909 crossrefType "book-chapter" @default.
- W2966281909 hasAuthorship W2966281909A5001391327 @default.
- W2966281909 hasAuthorship W2966281909A5040642389 @default.
- W2966281909 hasAuthorship W2966281909A5045287189 @default.
- W2966281909 hasAuthorship W2966281909A5050013557 @default.
- W2966281909 hasAuthorship W2966281909A5052685137 @default.
- W2966281909 hasAuthorship W2966281909A5058629014 @default.
- W2966281909 hasAuthorship W2966281909A5058770707 @default.
- W2966281909 hasAuthorship W2966281909A5059086195 @default.
- W2966281909 hasAuthorship W2966281909A5061589971 @default.
- W2966281909 hasAuthorship W2966281909A5065582823 @default.
- W2966281909 hasAuthorship W2966281909A5076646275 @default.
- W2966281909 hasConcept C138885662 @default.
- W2966281909 hasConcept C141071460 @default.
- W2966281909 hasConcept C142724271 @default.
- W2966281909 hasConcept C153180895 @default.
- W2966281909 hasConcept C154945302 @default.
- W2966281909 hasConcept C162324750 @default.
- W2966281909 hasConcept C169903167 @default.
- W2966281909 hasConcept C176217482 @default.
- W2966281909 hasConcept C177212765 @default.
- W2966281909 hasConcept C194789388 @default.
- W2966281909 hasConcept C21547014 @default.
- W2966281909 hasConcept C2776401178 @default.
- W2966281909 hasConcept C2779549770 @default.
- W2966281909 hasConcept C2911091166 @default.
- W2966281909 hasConcept C41008148 @default.
- W2966281909 hasConcept C41895202 @default.
- W2966281909 hasConcept C50644808 @default.
- W2966281909 hasConcept C52622490 @default.
- W2966281909 hasConcept C55493867 @default.
- W2966281909 hasConcept C71924100 @default.
- W2966281909 hasConcept C77088390 @default.
- W2966281909 hasConcept C86803240 @default.
- W2966281909 hasConceptScore W2966281909C138885662 @default.
- W2966281909 hasConceptScore W2966281909C141071460 @default.
- W2966281909 hasConceptScore W2966281909C142724271 @default.
- W2966281909 hasConceptScore W2966281909C153180895 @default.
- W2966281909 hasConceptScore W2966281909C154945302 @default.
- W2966281909 hasConceptScore W2966281909C162324750 @default.
- W2966281909 hasConceptScore W2966281909C169903167 @default.
- W2966281909 hasConceptScore W2966281909C176217482 @default.
- W2966281909 hasConceptScore W2966281909C177212765 @default.
- W2966281909 hasConceptScore W2966281909C194789388 @default.
- W2966281909 hasConceptScore W2966281909C21547014 @default.
- W2966281909 hasConceptScore W2966281909C2776401178 @default.
- W2966281909 hasConceptScore W2966281909C2779549770 @default.
- W2966281909 hasConceptScore W2966281909C2911091166 @default.
- W2966281909 hasConceptScore W2966281909C41008148 @default.
- W2966281909 hasConceptScore W2966281909C41895202 @default.
- W2966281909 hasConceptScore W2966281909C50644808 @default.
- W2966281909 hasConceptScore W2966281909C52622490 @default.
- W2966281909 hasConceptScore W2966281909C55493867 @default.
- W2966281909 hasConceptScore W2966281909C71924100 @default.