Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966289560> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2966289560 abstract "Abstract Computational methods for kinematic synthesis of mechanisms for motion generation problems require input in the form of precision positions. Given the highly non-linear nature of the problem, solutions to these methods are overly sensitive to the input — a small perturbation to even a single position of a given motion can change the topology and dimensions of the synthesized mechanisms drastically. Thus, the synthesis becomes a blind iterative process of maneuvering precision positions in the hope of finding good solutions. In this paper, we present a deep-learning based framework which manages the uncertain user input and provides the user with a higher level control of the design process. The framework also imputes the input with missing information required by the computational algorithms. The approach starts by learning the probability distribution of possible linkage parameters with a deep generative modeling technique, called Variational Auto Encoder (VAE). This facilitates capturing salient features of the user input and relating them with possible linkage parameters. Then, input samples resembling the inferred salient features are generated and fed to the computational methods of kinematic synthesis. The framework post-processes the solutions and presents the concepts to the user along with a handle to visualize the variants of each concept. We define this approach as Variational Synthesis of Mechanisms. In addition, we also present an alternate End-to-End deep neural network architecture for Variational Synthesis of linkages. This End-to-End architecture is a Conditional-VAE (C-VAE), which approximates the conditional distribution of linkage parameters with respect to coupler trajectory distribution. The outcome is a probability distribution of kinematic linkages for an unknown coupler path or motion. This framework functions as a bridge between the current state of the art theoretical and computational kinematic methods and machine learning to enable designers to create practical mechanism design solutions." @default.
- W2966289560 created "2019-08-13" @default.
- W2966289560 creator A5024738946 @default.
- W2966289560 creator A5065218703 @default.
- W2966289560 date "2019-08-18" @default.
- W2966289560 modified "2023-09-26" @default.
- W2966289560 title "Computational Creativity via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models" @default.
- W2966289560 cites W1597009130 @default.
- W2966289560 cites W1965555277 @default.
- W2966289560 cites W1981141114 @default.
- W2966289560 cites W2007236503 @default.
- W2966289560 cites W2007750701 @default.
- W2966289560 cites W2019813067 @default.
- W2966289560 cites W2051004173 @default.
- W2966289560 cites W2063347381 @default.
- W2966289560 cites W2095705004 @default.
- W2966289560 cites W2108085713 @default.
- W2966289560 cites W2136938510 @default.
- W2966289560 cites W2150593711 @default.
- W2966289560 cites W2345803705 @default.
- W2966289560 cites W2565120523 @default.
- W2966289560 cites W2585475677 @default.
- W2966289560 cites W2765508278 @default.
- W2966289560 cites W2892823399 @default.
- W2966289560 cites W2901970002 @default.
- W2966289560 cites W2905547290 @default.
- W2966289560 cites W2913378083 @default.
- W2966289560 cites W3101380508 @default.
- W2966289560 doi "https://doi.org/10.1115/detc2019-98193" @default.
- W2966289560 hasPublicationYear "2019" @default.
- W2966289560 type Work @default.
- W2966289560 sameAs 2966289560 @default.
- W2966289560 citedByCount "1" @default.
- W2966289560 countsByYear W29662895602021 @default.
- W2966289560 crossrefType "proceedings-article" @default.
- W2966289560 hasAuthorship W2966289560A5024738946 @default.
- W2966289560 hasAuthorship W2966289560A5065218703 @default.
- W2966289560 hasConcept C108583219 @default.
- W2966289560 hasConcept C11413529 @default.
- W2966289560 hasConcept C121332964 @default.
- W2966289560 hasConcept C154945302 @default.
- W2966289560 hasConcept C167966045 @default.
- W2966289560 hasConcept C179799912 @default.
- W2966289560 hasConcept C39890363 @default.
- W2966289560 hasConcept C39920418 @default.
- W2966289560 hasConcept C41008148 @default.
- W2966289560 hasConcept C50644808 @default.
- W2966289560 hasConcept C74650414 @default.
- W2966289560 hasConcept C80444323 @default.
- W2966289560 hasConceptScore W2966289560C108583219 @default.
- W2966289560 hasConceptScore W2966289560C11413529 @default.
- W2966289560 hasConceptScore W2966289560C121332964 @default.
- W2966289560 hasConceptScore W2966289560C154945302 @default.
- W2966289560 hasConceptScore W2966289560C167966045 @default.
- W2966289560 hasConceptScore W2966289560C179799912 @default.
- W2966289560 hasConceptScore W2966289560C39890363 @default.
- W2966289560 hasConceptScore W2966289560C39920418 @default.
- W2966289560 hasConceptScore W2966289560C41008148 @default.
- W2966289560 hasConceptScore W2966289560C50644808 @default.
- W2966289560 hasConceptScore W2966289560C74650414 @default.
- W2966289560 hasConceptScore W2966289560C80444323 @default.
- W2966289560 hasLocation W29662895601 @default.
- W2966289560 hasOpenAccess W2966289560 @default.
- W2966289560 hasPrimaryLocation W29662895601 @default.
- W2966289560 hasRelatedWork W1012444 @default.
- W2966289560 hasRelatedWork W13294315 @default.
- W2966289560 hasRelatedWork W14047543 @default.
- W2966289560 hasRelatedWork W351505 @default.
- W2966289560 hasRelatedWork W3891032 @default.
- W2966289560 hasRelatedWork W4615079 @default.
- W2966289560 hasRelatedWork W8015944 @default.
- W2966289560 hasRelatedWork W9083658 @default.
- W2966289560 hasRelatedWork W9190101 @default.
- W2966289560 hasRelatedWork W10290998 @default.
- W2966289560 isParatext "false" @default.
- W2966289560 isRetracted "false" @default.
- W2966289560 magId "2966289560" @default.
- W2966289560 workType "article" @default.