Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966298323> ?p ?o ?g. }
- W2966298323 endingPage "124007" @default.
- W2966298323 startingPage "124007" @default.
- W2966298323 abstract "Blending satellite-based precipitation estimation (SPE) data and in-situ gauge observation data can generate effective spatially-continuous-precipitation estimates with improved accuracy. This study assessed the improvement of the long-term SPE when blending with in-situ gauge observations for drought monitoring, using a simple but effective blending method named the geographical difference analysis (GDA) method and with the Precipitation Estimation from Remote Sensed Information by using Artificial Neural Networks-Climate Data Records (PERSIANN-CDR) as case study. In-situ precipitation observations from three meteorological station sets with different densities—the sparse (50), medium (200), dense (727) station set—were adopted to evaluate the effect of gauge density on the performance of SPE-gauge data blending. Two widely-used indices—standardized precipitation index (SPI) and self-calibrating Palmer drought severity index (SC_PDSI)—were used as case studies. Except the case of sparse 50-station subset, the SPE-gauge blending shows apparent improvement to the raw PERSIANN-CDR data, for both the accuracy of precipitation input and many aspects of drought monitoring, e.g. reproducing drought magnitude and revealing spatial pattern of drought, in which SC_PDSI shows more significant improvement than SPI. The dense 727-station set shows the largest improvement in the blending data, but the corresponding station-only interpolations also exhibit comparable performance to the blending data, indicating lower utilization value of the SPE data for these cases. Only the blending results of the medium-density 200-station set shows satisfactory drought monitoring performance as well as significant improvements relative to the station-only interpolations. According to the quantitative analyses, the medium density (about 50–75 gauges per 106 km2 in our cases) might be the most economic gauge density for SPE-gauge blending, as it has satisfactory improvement in blending results, can make fullest use of the advantages of SPE data and requires relatively fewer gauges. Our results can help to understand how the SPE-gauge blending could improve the SPE-based drought monitoring and serves as a reference for applying drought monitoring under the data-limited conditions. Subsequent studies or applications should also carefully consider the effect of gauge density." @default.
- W2966298323 created "2019-08-13" @default.
- W2966298323 creator A5037095156 @default.
- W2966298323 creator A5048334112 @default.
- W2966298323 creator A5082939536 @default.
- W2966298323 date "2019-10-01" @default.
- W2966298323 modified "2023-10-15" @default.
- W2966298323 title "Blending long-term satellite-based precipitation data with gauge observations for drought monitoring: Considering effects of different gauge densities" @default.
- W2966298323 cites W1852984854 @default.
- W2966298323 cites W1871969869 @default.
- W2966298323 cites W1912780721 @default.
- W2966298323 cites W1995622703 @default.
- W2966298323 cites W2007051388 @default.
- W2966298323 cites W2008820148 @default.
- W2966298323 cites W2015522309 @default.
- W2966298323 cites W2022349500 @default.
- W2966298323 cites W2022548072 @default.
- W2966298323 cites W2036133701 @default.
- W2966298323 cites W2054112910 @default.
- W2966298323 cites W2057571429 @default.
- W2966298323 cites W2063761622 @default.
- W2966298323 cites W2073298425 @default.
- W2966298323 cites W2077968790 @default.
- W2966298323 cites W2080430101 @default.
- W2966298323 cites W2091537005 @default.
- W2966298323 cites W2092803337 @default.
- W2966298323 cites W2094653192 @default.
- W2966298323 cites W2101394945 @default.
- W2966298323 cites W2107502191 @default.
- W2966298323 cites W2108886061 @default.
- W2966298323 cites W2158535548 @default.
- W2966298323 cites W2169245074 @default.
- W2966298323 cites W2170280355 @default.
- W2966298323 cites W2174742396 @default.
- W2966298323 cites W2228772891 @default.
- W2966298323 cites W2261645655 @default.
- W2966298323 cites W2306941978 @default.
- W2966298323 cites W2322682668 @default.
- W2966298323 cites W2345653556 @default.
- W2966298323 cites W2384817209 @default.
- W2966298323 cites W2465117308 @default.
- W2966298323 cites W2490181476 @default.
- W2966298323 cites W2520203883 @default.
- W2966298323 cites W2553288044 @default.
- W2966298323 cites W2553423198 @default.
- W2966298323 cites W2556273848 @default.
- W2966298323 cites W2594514080 @default.
- W2966298323 cites W2607398939 @default.
- W2966298323 cites W2613535079 @default.
- W2966298323 cites W2689045665 @default.
- W2966298323 cites W2771635983 @default.
- W2966298323 cites W2775321046 @default.
- W2966298323 cites W2789329162 @default.
- W2966298323 cites W2803531831 @default.
- W2966298323 cites W2804488477 @default.
- W2966298323 cites W2804541749 @default.
- W2966298323 cites W2805187526 @default.
- W2966298323 cites W2888553091 @default.
- W2966298323 cites W2888687513 @default.
- W2966298323 cites W2890294023 @default.
- W2966298323 cites W2899762099 @default.
- W2966298323 cites W917426581 @default.
- W2966298323 doi "https://doi.org/10.1016/j.jhydrol.2019.124007" @default.
- W2966298323 hasPublicationYear "2019" @default.
- W2966298323 type Work @default.
- W2966298323 sameAs 2966298323 @default.
- W2966298323 citedByCount "27" @default.
- W2966298323 countsByYear W29662983232020 @default.
- W2966298323 countsByYear W29662983232021 @default.
- W2966298323 countsByYear W29662983232022 @default.
- W2966298323 countsByYear W29662983232023 @default.
- W2966298323 crossrefType "journal-article" @default.
- W2966298323 hasAuthorship W2966298323A5037095156 @default.
- W2966298323 hasAuthorship W2966298323A5048334112 @default.
- W2966298323 hasAuthorship W2966298323A5082939536 @default.
- W2966298323 hasConcept C105795698 @default.
- W2966298323 hasConcept C107054158 @default.
- W2966298323 hasConcept C120961793 @default.
- W2966298323 hasConcept C121332964 @default.
- W2966298323 hasConcept C127313418 @default.
- W2966298323 hasConcept C1276947 @default.
- W2966298323 hasConcept C153294291 @default.
- W2966298323 hasConcept C154945302 @default.
- W2966298323 hasConcept C165838908 @default.
- W2966298323 hasConcept C191897082 @default.
- W2966298323 hasConcept C192562407 @default.
- W2966298323 hasConcept C19269812 @default.
- W2966298323 hasConcept C205649164 @default.
- W2966298323 hasConcept C33923547 @default.
- W2966298323 hasConcept C39432304 @default.
- W2966298323 hasConcept C40976572 @default.
- W2966298323 hasConcept C41008148 @default.
- W2966298323 hasConcept C58489278 @default.
- W2966298323 hasConcept C62649853 @default.
- W2966298323 hasConceptScore W2966298323C105795698 @default.
- W2966298323 hasConceptScore W2966298323C107054158 @default.
- W2966298323 hasConceptScore W2966298323C120961793 @default.
- W2966298323 hasConceptScore W2966298323C121332964 @default.