Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966458308> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2966458308 endingPage "449" @default.
- W2966458308 startingPage "449" @default.
- W2966458308 abstract "Estimates of tree bark thickness are fundamental for forest management, however, the degree of precision is conditioned to the adoption of efficient modeling techniques. The objective of this study was to evaluate and propose a model of artificial neural networks to estimate the thickness of the tree bark of Tectona grandis (Teak). The data originated from the measurement of 68 dominant trees, ranging in age from 6 to 33 years. The thickness of the bark was correlated with variables inherent to the tree, being: diameter in the different positions of the stem (di); diameter at 1.3 m height (dbh); total height (ht); relative height (hi_rel); and age (id). The trained networks were of the multilayer perceptron type, and a linear regression model was adjusted as a comparative support. The accuracy of the estimates was evaluated through statistical indicators and graphical analysis. The results showed a strong correlation between bark thickness and tree diameter, as well as relative height, with values above 0.70. Age also exerted a strong influence on the thickness of the bark of the trees. The artificial intelligence technique has demonstrated the potential for such application and the model proposed with the input variables: diameter, relative height and age was the one that presented the best statistical performance, and thus was the most suitable for predicting the bark in Teak trees." @default.
- W2966458308 created "2019-08-13" @default.
- W2966458308 creator A5005824179 @default.
- W2966458308 creator A5016068973 @default.
- W2966458308 creator A5060297274 @default.
- W2966458308 creator A5074175582 @default.
- W2966458308 creator A5088491397 @default.
- W2966458308 date "2019-07-16" @default.
- W2966458308 modified "2023-10-18" @default.
- W2966458308 title "THICKNESS ACCURACY OF TEAK BARK BY ARTIFICIAL INTELLIGENCE" @default.
- W2966458308 doi "https://doi.org/10.5380/rf.v49i3.59106" @default.
- W2966458308 hasPublicationYear "2019" @default.
- W2966458308 type Work @default.
- W2966458308 sameAs 2966458308 @default.
- W2966458308 citedByCount "0" @default.
- W2966458308 crossrefType "journal-article" @default.
- W2966458308 hasAuthorship W2966458308A5005824179 @default.
- W2966458308 hasAuthorship W2966458308A5016068973 @default.
- W2966458308 hasAuthorship W2966458308A5060297274 @default.
- W2966458308 hasAuthorship W2966458308A5074175582 @default.
- W2966458308 hasAuthorship W2966458308A5088491397 @default.
- W2966458308 hasBestOaLocation W29664583081 @default.
- W2966458308 hasConcept C105795698 @default.
- W2966458308 hasConcept C113174947 @default.
- W2966458308 hasConcept C133446333 @default.
- W2966458308 hasConcept C134306372 @default.
- W2966458308 hasConcept C152877465 @default.
- W2966458308 hasConcept C154945302 @default.
- W2966458308 hasConcept C179717631 @default.
- W2966458308 hasConcept C205649164 @default.
- W2966458308 hasConcept C2779858969 @default.
- W2966458308 hasConcept C2986587452 @default.
- W2966458308 hasConcept C33923547 @default.
- W2966458308 hasConcept C41008148 @default.
- W2966458308 hasConcept C48921125 @default.
- W2966458308 hasConcept C50644808 @default.
- W2966458308 hasConcept C60908668 @default.
- W2966458308 hasConcept C97137747 @default.
- W2966458308 hasConceptScore W2966458308C105795698 @default.
- W2966458308 hasConceptScore W2966458308C113174947 @default.
- W2966458308 hasConceptScore W2966458308C133446333 @default.
- W2966458308 hasConceptScore W2966458308C134306372 @default.
- W2966458308 hasConceptScore W2966458308C152877465 @default.
- W2966458308 hasConceptScore W2966458308C154945302 @default.
- W2966458308 hasConceptScore W2966458308C179717631 @default.
- W2966458308 hasConceptScore W2966458308C205649164 @default.
- W2966458308 hasConceptScore W2966458308C2779858969 @default.
- W2966458308 hasConceptScore W2966458308C2986587452 @default.
- W2966458308 hasConceptScore W2966458308C33923547 @default.
- W2966458308 hasConceptScore W2966458308C41008148 @default.
- W2966458308 hasConceptScore W2966458308C48921125 @default.
- W2966458308 hasConceptScore W2966458308C50644808 @default.
- W2966458308 hasConceptScore W2966458308C60908668 @default.
- W2966458308 hasConceptScore W2966458308C97137747 @default.
- W2966458308 hasIssue "3" @default.
- W2966458308 hasLocation W29664583081 @default.
- W2966458308 hasOpenAccess W2966458308 @default.
- W2966458308 hasPrimaryLocation W29664583081 @default.
- W2966458308 hasRelatedWork W2069800841 @default.
- W2966458308 hasRelatedWork W2094198523 @default.
- W2966458308 hasRelatedWork W2186980807 @default.
- W2966458308 hasRelatedWork W2331701639 @default.
- W2966458308 hasRelatedWork W2409092870 @default.
- W2966458308 hasRelatedWork W2797282764 @default.
- W2966458308 hasRelatedWork W2943894916 @default.
- W2966458308 hasRelatedWork W2966458308 @default.
- W2966458308 hasRelatedWork W2994741194 @default.
- W2966458308 hasRelatedWork W3023264678 @default.
- W2966458308 hasVolume "49" @default.
- W2966458308 isParatext "false" @default.
- W2966458308 isRetracted "false" @default.
- W2966458308 magId "2966458308" @default.
- W2966458308 workType "article" @default.