Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966489898> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2966489898 endingPage "917" @default.
- W2966489898 startingPage "911" @default.
- W2966489898 abstract "Although structures determined at near-atomic resolution are now routinely reported by cryo-electron microscopy (cryo-EM), many density maps are determined at an intermediate resolution, and extracting structure information from these maps is still a challenge. We report a computational method, Emap2sec, that identifies the secondary structures of proteins (α-helices, β-sheets and other structures) in EM maps at resolutions of between 5 and 10 A. Emap2sec uses a three-dimensional deep convolutional neural network to assign secondary structure to each grid point in an EM map. We tested Emap2sec on EM maps simulated from 34 structures at resolutions of 6.0 and 10.0 A, as well as on 43 maps determined experimentally at resolutions of between 5.0 and 9.5 A. Emap2sec was able to clearly identify the secondary structures in many maps tested, and showed substantially better performance than existing methods. Emap2sec uses a deep convolutional neural network to assign protein secondary structures in intermediate-resolution (5–10 A) cryo-EM maps." @default.
- W2966489898 created "2019-08-13" @default.
- W2966489898 creator A5041487959 @default.
- W2966489898 creator A5062293219 @default.
- W2966489898 creator A5067994741 @default.
- W2966489898 date "2019-07-29" @default.
- W2966489898 modified "2023-10-12" @default.
- W2966489898 title "Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning" @default.
- W2966489898 cites W1755025530 @default.
- W2966489898 cites W1966323820 @default.
- W2966489898 cites W1969672293 @default.
- W2966489898 cites W1994086483 @default.
- W2966489898 cites W1995043996 @default.
- W2966489898 cites W2000630778 @default.
- W2966489898 cites W2075506230 @default.
- W2966489898 cites W2086549128 @default.
- W2966489898 cites W2097604487 @default.
- W2966489898 cites W2100455255 @default.
- W2966489898 cites W2111070241 @default.
- W2966489898 cites W2117539524 @default.
- W2966489898 cites W2127130852 @default.
- W2966489898 cites W2127697948 @default.
- W2966489898 cites W2130479394 @default.
- W2966489898 cites W2141920771 @default.
- W2966489898 cites W2149977950 @default.
- W2966489898 cites W2153187042 @default.
- W2966489898 cites W2161072217 @default.
- W2966489898 cites W2170693976 @default.
- W2966489898 cites W2211722331 @default.
- W2966489898 cites W2212589734 @default.
- W2966489898 cites W2305071738 @default.
- W2966489898 cites W2506310782 @default.
- W2966489898 cites W2568820001 @default.
- W2966489898 cites W2576361275 @default.
- W2966489898 cites W2593133810 @default.
- W2966489898 cites W2604948333 @default.
- W2966489898 cites W2655649718 @default.
- W2966489898 cites W2802061004 @default.
- W2966489898 cites W2803948904 @default.
- W2966489898 cites W2885035438 @default.
- W2966489898 cites W2889085087 @default.
- W2966489898 cites W4210352507 @default.
- W2966489898 doi "https://doi.org/10.1038/s41592-019-0500-1" @default.
- W2966489898 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6717539" @default.
- W2966489898 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31358979" @default.
- W2966489898 hasPublicationYear "2019" @default.
- W2966489898 type Work @default.
- W2966489898 sameAs 2966489898 @default.
- W2966489898 citedByCount "62" @default.
- W2966489898 countsByYear W29664898982019 @default.
- W2966489898 countsByYear W29664898982020 @default.
- W2966489898 countsByYear W29664898982021 @default.
- W2966489898 countsByYear W29664898982022 @default.
- W2966489898 countsByYear W29664898982023 @default.
- W2966489898 crossrefType "journal-article" @default.
- W2966489898 hasAuthorship W2966489898A5041487959 @default.
- W2966489898 hasAuthorship W2966489898A5062293219 @default.
- W2966489898 hasAuthorship W2966489898A5067994741 @default.
- W2966489898 hasBestOaLocation W29664898982 @default.
- W2966489898 hasConcept C108583219 @default.
- W2966489898 hasConcept C12554922 @default.
- W2966489898 hasConcept C138268822 @default.
- W2966489898 hasConcept C154945302 @default.
- W2966489898 hasConcept C185592680 @default.
- W2966489898 hasConcept C20702342 @default.
- W2966489898 hasConcept C41008148 @default.
- W2966489898 hasConcept C70721500 @default.
- W2966489898 hasConcept C86803240 @default.
- W2966489898 hasConceptScore W2966489898C108583219 @default.
- W2966489898 hasConceptScore W2966489898C12554922 @default.
- W2966489898 hasConceptScore W2966489898C138268822 @default.
- W2966489898 hasConceptScore W2966489898C154945302 @default.
- W2966489898 hasConceptScore W2966489898C185592680 @default.
- W2966489898 hasConceptScore W2966489898C20702342 @default.
- W2966489898 hasConceptScore W2966489898C41008148 @default.
- W2966489898 hasConceptScore W2966489898C70721500 @default.
- W2966489898 hasConceptScore W2966489898C86803240 @default.
- W2966489898 hasIssue "9" @default.
- W2966489898 hasLocation W29664898981 @default.
- W2966489898 hasLocation W29664898982 @default.
- W2966489898 hasLocation W29664898983 @default.
- W2966489898 hasOpenAccess W2966489898 @default.
- W2966489898 hasPrimaryLocation W29664898981 @default.
- W2966489898 hasRelatedWork W2126887587 @default.
- W2966489898 hasRelatedWork W2731899572 @default.
- W2966489898 hasRelatedWork W2748952813 @default.
- W2966489898 hasRelatedWork W2899084033 @default.
- W2966489898 hasRelatedWork W2939353110 @default.
- W2966489898 hasRelatedWork W2941846814 @default.
- W2966489898 hasRelatedWork W2948658236 @default.
- W2966489898 hasRelatedWork W3009238340 @default.
- W2966489898 hasRelatedWork W3215138031 @default.
- W2966489898 hasRelatedWork W4230611425 @default.
- W2966489898 hasVolume "16" @default.
- W2966489898 isParatext "false" @default.
- W2966489898 isRetracted "false" @default.
- W2966489898 magId "2966489898" @default.
- W2966489898 workType "article" @default.