Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966567950> ?p ?o ?g. }
- W2966567950 endingPage "e100096" @default.
- W2966567950 startingPage "e100096" @default.
- W2966567950 abstract "Background Subjective well-being (SWB), also known as happiness, plays an important role in evaluating both mental and physical health. Adolescents deserve specific attention because they are under a great variety of stresses and are at risk for mental disorders during adulthood. Aim The present paper aims to predict undergraduate students’ SWB by machine learning method. Methods Gradient Boosting Classifier which was an innovative yet validated machine learning approach was used to analyse data from 10 518 Chinese adolescents. The online survey included 298 factors such as depression and personality. Quality control procedure was used to minimise biases due to online survey reports. We applied feature selection to achieve the balance between optimal prediction and result interpretation. Results The top 20 happiness risks and protective factors were finally brought into the predicting model. Approximately 90% individuals’ SWB can be predicted correctly, and the sensitivity and specificity were about 92% and 90%, respectively. Conclusions This result identifies at-risk individuals according to new characteristics and established the foundation for adolescent prevention strategies." @default.
- W2966567950 created "2019-08-13" @default.
- W2966567950 creator A5003874489 @default.
- W2966567950 creator A5005233596 @default.
- W2966567950 creator A5007674327 @default.
- W2966567950 creator A5016517695 @default.
- W2966567950 creator A5024231847 @default.
- W2966567950 creator A5028708493 @default.
- W2966567950 creator A5029309754 @default.
- W2966567950 creator A5036414175 @default.
- W2966567950 creator A5037964021 @default.
- W2966567950 creator A5044136113 @default.
- W2966567950 creator A5050621653 @default.
- W2966567950 creator A5053330974 @default.
- W2966567950 creator A5056022168 @default.
- W2966567950 creator A5058412586 @default.
- W2966567950 creator A5060461853 @default.
- W2966567950 creator A5061020379 @default.
- W2966567950 creator A5064158500 @default.
- W2966567950 creator A5071451609 @default.
- W2966567950 creator A5073903182 @default.
- W2966567950 creator A5086916440 @default.
- W2966567950 date "2019-09-01" @default.
- W2966567950 modified "2023-10-12" @default.
- W2966567950 title "Prediction of adolescent subjective well-being: A machine learning approach" @default.
- W2966567950 cites W1534477342 @default.
- W2966567950 cites W1627352250 @default.
- W2966567950 cites W1655268428 @default.
- W2966567950 cites W1678356000 @default.
- W2966567950 cites W1995205893 @default.
- W2966567950 cites W1997873833 @default.
- W2966567950 cites W1999397138 @default.
- W2966567950 cites W2010429952 @default.
- W2966567950 cites W2053906014 @default.
- W2966567950 cites W2065340646 @default.
- W2966567950 cites W2124802095 @default.
- W2966567950 cites W2125002529 @default.
- W2966567950 cites W2131755838 @default.
- W2966567950 cites W2155806188 @default.
- W2966567950 cites W2157483908 @default.
- W2966567950 cites W2189564841 @default.
- W2966567950 cites W2277537560 @default.
- W2966567950 cites W2307609393 @default.
- W2966567950 cites W2336993262 @default.
- W2966567950 cites W2507383920 @default.
- W2966567950 cites W2606439218 @default.
- W2966567950 cites W2792419535 @default.
- W2966567950 cites W2793253709 @default.
- W2966567950 cites W2807093528 @default.
- W2966567950 cites W4238242197 @default.
- W2966567950 cites W4245398612 @default.
- W2966567950 cites W638388534 @default.
- W2966567950 doi "https://doi.org/10.1136/gpsych-2019-100096" @default.
- W2966567950 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6738679" @default.
- W2966567950 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31552391" @default.
- W2966567950 hasPublicationYear "2019" @default.
- W2966567950 type Work @default.
- W2966567950 sameAs 2966567950 @default.
- W2966567950 citedByCount "8" @default.
- W2966567950 countsByYear W29665679502021 @default.
- W2966567950 countsByYear W29665679502022 @default.
- W2966567950 countsByYear W29665679502023 @default.
- W2966567950 crossrefType "journal-article" @default.
- W2966567950 hasAuthorship W2966567950A5003874489 @default.
- W2966567950 hasAuthorship W2966567950A5005233596 @default.
- W2966567950 hasAuthorship W2966567950A5007674327 @default.
- W2966567950 hasAuthorship W2966567950A5016517695 @default.
- W2966567950 hasAuthorship W2966567950A5024231847 @default.
- W2966567950 hasAuthorship W2966567950A5028708493 @default.
- W2966567950 hasAuthorship W2966567950A5029309754 @default.
- W2966567950 hasAuthorship W2966567950A5036414175 @default.
- W2966567950 hasAuthorship W2966567950A5037964021 @default.
- W2966567950 hasAuthorship W2966567950A5044136113 @default.
- W2966567950 hasAuthorship W2966567950A5050621653 @default.
- W2966567950 hasAuthorship W2966567950A5053330974 @default.
- W2966567950 hasAuthorship W2966567950A5056022168 @default.
- W2966567950 hasAuthorship W2966567950A5058412586 @default.
- W2966567950 hasAuthorship W2966567950A5060461853 @default.
- W2966567950 hasAuthorship W2966567950A5061020379 @default.
- W2966567950 hasAuthorship W2966567950A5064158500 @default.
- W2966567950 hasAuthorship W2966567950A5071451609 @default.
- W2966567950 hasAuthorship W2966567950A5073903182 @default.
- W2966567950 hasAuthorship W2966567950A5086916440 @default.
- W2966567950 hasBestOaLocation W29665679501 @default.
- W2966567950 hasConcept C112570445 @default.
- W2966567950 hasConcept C119857082 @default.
- W2966567950 hasConcept C134362201 @default.
- W2966567950 hasConcept C148483581 @default.
- W2966567950 hasConcept C154945302 @default.
- W2966567950 hasConcept C15744967 @default.
- W2966567950 hasConcept C187288502 @default.
- W2966567950 hasConcept C2778999518 @default.
- W2966567950 hasConcept C41008148 @default.
- W2966567950 hasConcept C542102704 @default.
- W2966567950 hasConcept C75630572 @default.
- W2966567950 hasConcept C77805123 @default.
- W2966567950 hasConceptScore W2966567950C112570445 @default.
- W2966567950 hasConceptScore W2966567950C119857082 @default.