Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966570433> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2966570433 abstract "Over the past decade the availability of digital data relating to animal health has grown exponentially, and with it an interest in making effective and timely use of these data. In particular the use of syndrome-based indicators to augment traditional laboratory results for the purpose of disease surveillance has been the focus of a number of studies. The volume and semi-structured nature of such data, together with the fact that it must often be processed in real time, have led to methodological challenges in the appropriate interpretation of these novel data sources. In this talk I will discuss a range of techniques ranging from text-mining, times series analyses and clustering algorithms that can be used to identify syndromic signals in laboratory test request data, together with statistical techniques that can be used to detect the various types of temporal aberrations that can occur. These approaches have been implemented in systems linked to animal health laboratory systems in Canada and Sweden, and their use will be illustrated by way of case-based examples. However, the isolated use of laboratory data is rarely adequate in the context of syndromic surveillance, and a variety of animal health data sources are being explored for early disease detection. In terms of 'next steps' towards successfully using such data, I believe that the integration of evidence from multiple sources is of critical importance. A key challenge in moving forward is the need to ensure that aggregation and comparison across data sources is being made among similar objects. In this context we are exploring the use of knowledge-based ontologies, which provide machine-readable methods for the representation of and inference from data. We will discuss one such pilot ontology – AHSO (Animal Health Surveillance Ontology) – and illustrate the ways in which the availability of frameworks such as this can be complemented by recent advances in computer science, including deep learning and the Semantic Web. Research results from these areas will allow for the integration of information derived from diagnostic data with that extracted from other sources of animal health information, including clinical records, mortality and even regular production data, to create a framework for truly knowledgeable surveillance." @default.
- W2966570433 created "2019-08-13" @default.
- W2966570433 creator A5006194101 @default.
- W2966570433 creator A5021349695 @default.
- W2966570433 date "2015-06-18" @default.
- W2966570433 modified "2023-09-23" @default.
- W2966570433 title "The role of laboratory data in 'knowledgeable surveillance'" @default.
- W2966570433 hasPublicationYear "2015" @default.
- W2966570433 type Work @default.
- W2966570433 sameAs 2966570433 @default.
- W2966570433 citedByCount "0" @default.
- W2966570433 crossrefType "journal-article" @default.
- W2966570433 hasAuthorship W2966570433A5006194101 @default.
- W2966570433 hasAuthorship W2966570433A5021349695 @default.
- W2966570433 hasConcept C124101348 @default.
- W2966570433 hasConcept C136197465 @default.
- W2966570433 hasConcept C138958017 @default.
- W2966570433 hasConcept C154945302 @default.
- W2966570433 hasConcept C166957645 @default.
- W2966570433 hasConcept C199360897 @default.
- W2966570433 hasConcept C205649164 @default.
- W2966570433 hasConcept C2522767166 @default.
- W2966570433 hasConcept C2779343474 @default.
- W2966570433 hasConcept C41008148 @default.
- W2966570433 hasConceptScore W2966570433C124101348 @default.
- W2966570433 hasConceptScore W2966570433C136197465 @default.
- W2966570433 hasConceptScore W2966570433C138958017 @default.
- W2966570433 hasConceptScore W2966570433C154945302 @default.
- W2966570433 hasConceptScore W2966570433C166957645 @default.
- W2966570433 hasConceptScore W2966570433C199360897 @default.
- W2966570433 hasConceptScore W2966570433C205649164 @default.
- W2966570433 hasConceptScore W2966570433C2522767166 @default.
- W2966570433 hasConceptScore W2966570433C2779343474 @default.
- W2966570433 hasConceptScore W2966570433C41008148 @default.
- W2966570433 hasOpenAccess W2966570433 @default.
- W2966570433 hasRelatedWork W196720529 @default.
- W2966570433 hasRelatedWork W2010194799 @default.
- W2966570433 hasRelatedWork W2092047635 @default.
- W2966570433 hasRelatedWork W2185327107 @default.
- W2966570433 hasRelatedWork W2295127861 @default.
- W2966570433 hasRelatedWork W2405420433 @default.
- W2966570433 hasRelatedWork W2548235813 @default.
- W2966570433 hasRelatedWork W2549900009 @default.
- W2966570433 hasRelatedWork W2580307732 @default.
- W2966570433 hasRelatedWork W2754070112 @default.
- W2966570433 hasRelatedWork W2898126066 @default.
- W2966570433 hasRelatedWork W2915158434 @default.
- W2966570433 hasRelatedWork W2941163790 @default.
- W2966570433 hasRelatedWork W3137915037 @default.
- W2966570433 hasRelatedWork W3173378937 @default.
- W2966570433 hasRelatedWork W3197741474 @default.
- W2966570433 hasRelatedWork W564299006 @default.
- W2966570433 hasRelatedWork W997111777 @default.
- W2966570433 hasRelatedWork W2188609748 @default.
- W2966570433 hasRelatedWork W3003155715 @default.
- W2966570433 isParatext "false" @default.
- W2966570433 isRetracted "false" @default.
- W2966570433 magId "2966570433" @default.
- W2966570433 workType "article" @default.