Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966581501> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2966581501 abstract "Cloud computing is becoming a fundamental facility of society today. Large-scale public or private cloud datacenters spreading millions of servers, as a warehouse-scale computer, are supporting most business of Fortune-500 companies and serving billions of users around the world. Unfortunately, modern industry-wide average datacenter utilization is as low as 6% to 12%. Low utilization not only negatively impacts operational and capital components of cost efficiency, but also becomes the scaling bottleneck due to the limits of electricity delivered by nearby utility. It is critical and challenge to improve multi-resource efficiency for global datacenters. Additionally, with the great commercial success of diverse big data analytics services, enterprise datacenters are evolving to host heterogeneous computation workloads including online web services, batch processing, machine learning, streaming computing, interactive query and graph computation on shared clusters. Most of them are long-running workloads that leverage long-lived containers to execute tasks. We concluded datacenter resource scheduling works over last 15 years. Most previous works are designed to maximize the cluster efficiency for short-lived tasks in batch processing system like Hadoop. They are not suitable for modern long-running workloads of Microservices, Spark, Flink, Pregel, Storm or Tensorflow like systems. It is urgent to develop new effective scheduling and resource allocation approaches to improve efficiency in large-scale enterprise datacenters. In the dissertation, we are the first of works to define and identify the problems, challenges and scenarios of scheduling and resource management for diverse long-running workloads in modern datacenter. They rely on predictive scheduling techniques to perform reservation, auto-scaling, migration or rescheduling. It forces us to pursue and explore more intelligent scheduling techniques by adequate predictive knowledges. We innovatively specify what is intelligent scheduling, what abilities are necessary towards intelligent scheduling, how to leverage intelligent scheduling to transfer NP-hard online scheduling problems to resolvable offline scheduling issues. We designed and implemented an intelligent cloud datacenter scheduler, which automatically performs resource-to-performance modeling, predictive optimal reservation estimation, QoS (interference)-aware predictive scheduling to maximize resource efficiency of multi-dimensions (CPU, Memory, Network, Disk I/O), and strictly guarantee service level agreements (SLA) for long-running workloads. Finally, we introduced a large-scale co-location techniques of executing long-running and other workloads on the shared global datacenter infrastructure of Alibaba Group. It effectively improves cluster utilization from 10% to averagely 50%. It is far more complicated beyond scheduling that involves technique evolutions of IDC, network, physical datacenter topology, storage,…" @default.
- W2966581501 created "2019-08-13" @default.
- W2966581501 creator A5048954651 @default.
- W2966581501 date "2019-01-01" @default.
- W2966581501 modified "2023-09-23" @default.
- W2966581501 title "Data-Driven Intelligent Scheduling For Long Running Workloads In Large-Scale Datacenters" @default.
- W2966581501 cites W1448681276 @default.
- W2966581501 cites W1788180225 @default.
- W2966581501 cites W1901756263 @default.
- W2966581501 cites W2038412523 @default.
- W2966581501 cites W2045271686 @default.
- W2966581501 cites W2085797995 @default.
- W2966581501 cites W2093941454 @default.
- W2966581501 cites W2100830825 @default.
- W2966581501 cites W2105947650 @default.
- W2966581501 cites W2126083918 @default.
- W2966581501 cites W2140094873 @default.
- W2966581501 cites W2141563029 @default.
- W2966581501 cites W2143408306 @default.
- W2966581501 cites W2154042331 @default.
- W2966581501 cites W2155893237 @default.
- W2966581501 cites W2163961697 @default.
- W2966581501 cites W2173213060 @default.
- W2966581501 cites W2260553848 @default.
- W2966581501 cites W2335814492 @default.
- W2966581501 cites W2394680079 @default.
- W2966581501 cites W2523412218 @default.
- W2966581501 cites W2528415359 @default.
- W2966581501 cites W2577489668 @default.
- W2966581501 cites W2740985301 @default.
- W2966581501 cites W2741620247 @default.
- W2966581501 cites W2756536429 @default.
- W2966581501 cites W2758346860 @default.
- W2966581501 cites W4424364 @default.
- W2966581501 cites W9592747 @default.
- W2966581501 hasPublicationYear "2019" @default.
- W2966581501 type Work @default.
- W2966581501 sameAs 2966581501 @default.
- W2966581501 citedByCount "0" @default.
- W2966581501 crossrefType "journal-article" @default.
- W2966581501 hasAuthorship W2966581501A5048954651 @default.
- W2966581501 hasConcept C111919701 @default.
- W2966581501 hasConcept C120314980 @default.
- W2966581501 hasConcept C149635348 @default.
- W2966581501 hasConcept C153083717 @default.
- W2966581501 hasConcept C154945302 @default.
- W2966581501 hasConcept C162324750 @default.
- W2966581501 hasConcept C172658912 @default.
- W2966581501 hasConcept C206729178 @default.
- W2966581501 hasConcept C21547014 @default.
- W2966581501 hasConcept C2780513914 @default.
- W2966581501 hasConcept C41008148 @default.
- W2966581501 hasConcept C75684735 @default.
- W2966581501 hasConcept C77088390 @default.
- W2966581501 hasConcept C79158427 @default.
- W2966581501 hasConcept C79974875 @default.
- W2966581501 hasConcept C93996380 @default.
- W2966581501 hasConceptScore W2966581501C111919701 @default.
- W2966581501 hasConceptScore W2966581501C120314980 @default.
- W2966581501 hasConceptScore W2966581501C149635348 @default.
- W2966581501 hasConceptScore W2966581501C153083717 @default.
- W2966581501 hasConceptScore W2966581501C154945302 @default.
- W2966581501 hasConceptScore W2966581501C162324750 @default.
- W2966581501 hasConceptScore W2966581501C172658912 @default.
- W2966581501 hasConceptScore W2966581501C206729178 @default.
- W2966581501 hasConceptScore W2966581501C21547014 @default.
- W2966581501 hasConceptScore W2966581501C2780513914 @default.
- W2966581501 hasConceptScore W2966581501C41008148 @default.
- W2966581501 hasConceptScore W2966581501C75684735 @default.
- W2966581501 hasConceptScore W2966581501C77088390 @default.
- W2966581501 hasConceptScore W2966581501C79158427 @default.
- W2966581501 hasConceptScore W2966581501C79974875 @default.
- W2966581501 hasConceptScore W2966581501C93996380 @default.
- W2966581501 hasLocation W29665815011 @default.
- W2966581501 hasOpenAccess W2966581501 @default.
- W2966581501 hasPrimaryLocation W29665815011 @default.
- W2966581501 hasRelatedWork W1481621174 @default.
- W2966581501 hasRelatedWork W1512307296 @default.
- W2966581501 hasRelatedWork W1966310768 @default.
- W2966581501 hasRelatedWork W2038835554 @default.
- W2966581501 hasRelatedWork W2068867834 @default.
- W2966581501 hasRelatedWork W2070124281 @default.
- W2966581501 hasRelatedWork W2162720521 @default.
- W2966581501 hasRelatedWork W2248969075 @default.
- W2966581501 hasRelatedWork W2508091068 @default.
- W2966581501 hasRelatedWork W2526851073 @default.
- W2966581501 hasRelatedWork W2537761109 @default.
- W2966581501 hasRelatedWork W2610383189 @default.
- W2966581501 hasRelatedWork W2791571186 @default.
- W2966581501 hasRelatedWork W2886948677 @default.
- W2966581501 hasRelatedWork W2901257924 @default.
- W2966581501 hasRelatedWork W2932241490 @default.
- W2966581501 hasRelatedWork W2968837356 @default.
- W2966581501 hasRelatedWork W3009345928 @default.
- W2966581501 hasRelatedWork W3042428284 @default.
- W2966581501 hasRelatedWork W953517562 @default.
- W2966581501 isParatext "false" @default.
- W2966581501 isRetracted "false" @default.
- W2966581501 magId "2966581501" @default.
- W2966581501 workType "article" @default.