Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966617558> ?p ?o ?g. }
- W2966617558 endingPage "1258" @default.
- W2966617558 startingPage "1247" @default.
- W2966617558 abstract "Conventional isolated cyber–physical systems (CPS) based industrial networks are increasingly being integrated with modern corporate information technology (IT) network. Therefore, cyber-attacks on CPS are increasing enormously and this could result in a massive damage to the machines themselves or the humans who interact with them. Malware has been one of the major source of attacks and threats to the CPS networks and computer systems. The high growth and the variety of malware variants such as Internet worms, Trojan horses and computer viruses requires periodic update of the database. Traditional malware system fulfil this requirement by manual effort from the experts though signature generation. However manual update could result into potential drawback for integrity and availability of services provided by CPS systems and protection in real-time. Machine learning technique is a natural choice to address the malware challenge for CPSs, since it can easily model and discover the underlying patterns from large-scale data sets. This paper introduces intelligent models and algorithms that can extract behavioural features and inherent attack patterns from the existing malware data, then integrates the behavioural indicators into the detection system. The main contribution of the paper is that the proposed models do not require periodic manual effort to update the database of the detection engine. We have introduced semi-supervised models using unsupervised learning including independent component analysis (ICA), global K-means clustering and multivariate exponentially weighted moving average (MEWMA) for extracting behavioural indicators which clusters the malware. Then the extracted geometric information of the clusters and hoteling T2 of the behavioural indicators from MEWMA are incorporated into the database of existing detection system which are used with support vector machine (SVM) based supervised system. This enables the detection system to update the dynamic behavioural patterns of new malware automatically. The performances of developed semi-supervised models have been verified using malware data for both static and dynamic characteristics of malware. The summary of our experimental results demonstrate that the combination of unsupervised and supervised learning can successfully extracts behavioural indicators automatically from new malware. Performance comparison from experimental results summarize that the semi-supervised models can detect more accurately than the existing supervised models where accuracies are increased up to 100% for SVM and random forest based semi-supervised models." @default.
- W2966617558 created "2019-08-13" @default.
- W2966617558 creator A5019489166 @default.
- W2966617558 creator A5043100878 @default.
- W2966617558 creator A5045991464 @default.
- W2966617558 creator A5058941155 @default.
- W2966617558 creator A5085933596 @default.
- W2966617558 date "2019-12-01" @default.
- W2966617558 modified "2023-10-16" @default.
- W2966617558 title "Automatic extraction and integration of behavioural indicators of malware for protection of cyber–physical networks" @default.
- W2966617558 cites W1661167618 @default.
- W2966617558 cites W1718306640 @default.
- W2966617558 cites W1851403712 @default.
- W2966617558 cites W1901616594 @default.
- W2966617558 cites W1906842161 @default.
- W2966617558 cites W1971911274 @default.
- W2966617558 cites W1974621723 @default.
- W2966617558 cites W1975523615 @default.
- W2966617558 cites W1976107877 @default.
- W2966617558 cites W1982039810 @default.
- W2966617558 cites W1994531415 @default.
- W2966617558 cites W1996960305 @default.
- W2966617558 cites W2015249241 @default.
- W2966617558 cites W2020851875 @default.
- W2966617558 cites W2029608738 @default.
- W2966617558 cites W2038194220 @default.
- W2966617558 cites W2039427951 @default.
- W2966617558 cites W2050754297 @default.
- W2966617558 cites W2050829396 @default.
- W2966617558 cites W2057933324 @default.
- W2966617558 cites W2067681173 @default.
- W2966617558 cites W2122992840 @default.
- W2966617558 cites W2124659400 @default.
- W2966617558 cites W2140405352 @default.
- W2966617558 cites W2140678915 @default.
- W2966617558 cites W2146672645 @default.
- W2966617558 cites W2149709356 @default.
- W2966617558 cites W2153393809 @default.
- W2966617558 cites W2158698691 @default.
- W2966617558 cites W2161630727 @default.
- W2966617558 cites W2184590024 @default.
- W2966617558 cites W2186854858 @default.
- W2966617558 cites W2261354734 @default.
- W2966617558 cites W2468438421 @default.
- W2966617558 cites W2519971059 @default.
- W2966617558 cites W2623682848 @default.
- W2966617558 cites W2755207117 @default.
- W2966617558 cites W2766493169 @default.
- W2966617558 cites W2772434162 @default.
- W2966617558 cites W2784097977 @default.
- W2966617558 cites W2791662519 @default.
- W2966617558 cites W2795613961 @default.
- W2966617558 cites W2801888526 @default.
- W2966617558 cites W2888704015 @default.
- W2966617558 cites W2891691179 @default.
- W2966617558 cites W2911964244 @default.
- W2966617558 cites W2939746199 @default.
- W2966617558 cites W2943165231 @default.
- W2966617558 cites W2946363549 @default.
- W2966617558 cites W4244238212 @default.
- W2966617558 doi "https://doi.org/10.1016/j.future.2019.07.005" @default.
- W2966617558 hasPublicationYear "2019" @default.
- W2966617558 type Work @default.
- W2966617558 sameAs 2966617558 @default.
- W2966617558 citedByCount "15" @default.
- W2966617558 countsByYear W29666175582020 @default.
- W2966617558 countsByYear W29666175582021 @default.
- W2966617558 countsByYear W29666175582022 @default.
- W2966617558 countsByYear W29666175582023 @default.
- W2966617558 crossrefType "journal-article" @default.
- W2966617558 hasAuthorship W2966617558A5019489166 @default.
- W2966617558 hasAuthorship W2966617558A5043100878 @default.
- W2966617558 hasAuthorship W2966617558A5045991464 @default.
- W2966617558 hasAuthorship W2966617558A5058941155 @default.
- W2966617558 hasAuthorship W2966617558A5085933596 @default.
- W2966617558 hasConcept C111919701 @default.
- W2966617558 hasConcept C119857082 @default.
- W2966617558 hasConcept C124101348 @default.
- W2966617558 hasConcept C154945302 @default.
- W2966617558 hasConcept C179768478 @default.
- W2966617558 hasConcept C38652104 @default.
- W2966617558 hasConcept C41008148 @default.
- W2966617558 hasConcept C541664917 @default.
- W2966617558 hasConcept C73555534 @default.
- W2966617558 hasConcept C8038995 @default.
- W2966617558 hasConceptScore W2966617558C111919701 @default.
- W2966617558 hasConceptScore W2966617558C119857082 @default.
- W2966617558 hasConceptScore W2966617558C124101348 @default.
- W2966617558 hasConceptScore W2966617558C154945302 @default.
- W2966617558 hasConceptScore W2966617558C179768478 @default.
- W2966617558 hasConceptScore W2966617558C38652104 @default.
- W2966617558 hasConceptScore W2966617558C41008148 @default.
- W2966617558 hasConceptScore W2966617558C541664917 @default.
- W2966617558 hasConceptScore W2966617558C73555534 @default.
- W2966617558 hasConceptScore W2966617558C8038995 @default.
- W2966617558 hasFunder F4320335726 @default.
- W2966617558 hasLocation W29666175581 @default.
- W2966617558 hasOpenAccess W2966617558 @default.