Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966669968> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2966669968 abstract "Preterm infants' limb-pose estimation is a crucial but challenging task, which may improve patients' care and facilitate clinicians in infant's movements monitoring. Work in the literature either provides approaches to whole-body segmentation and tracking, which, however, has poor clinical value, or retrieve a posteriori limb pose from limb segmentation, increasing computational costs and introducing inaccuracy sources. In this paper, we address the problem of limb-pose estimation under a different point of view. We proposed a 2D fully-convolutional neural network for roughly detecting limb joints and joint connections, followed by a regression convolutional neural network for accurate joint and joint-connection position estimation. Joints from the same limb are then connected with a maximum bipartite matching approach. Our analysis does not require any prior modeling of infants' body structure, neither any manual interventions. For developing and testing the proposed approach, we built a dataset of four videos (video length = 90 s) recorded with a depth sensor in a neonatal intensive care unit (NICU) during the actual clinical practice, achieving median root mean square distance [pixels] of 10.790 (right arm), 10.542 (left arm), 8.294 (right leg), 11.270 (left leg) with respect to the ground-truth limb pose. The idea of estimating limb pose directly from depth images may represent a future paradigm for addressing the problem of preterm-infants' movement monitoring and offer all possible support to clinicians in NICUs." @default.
- W2966669968 created "2019-08-13" @default.
- W2966669968 creator A5000889718 @default.
- W2966669968 creator A5080667829 @default.
- W2966669968 creator A5083638676 @default.
- W2966669968 creator A5091783140 @default.
- W2966669968 date "2019-07-26" @default.
- W2966669968 modified "2023-09-27" @default.
- W2966669968 title "Preterm infants' limb-pose estimation from depth images using convolutional neural networks" @default.
- W2966669968 cites W121273397 @default.
- W2966669968 cites W1901129140 @default.
- W2966669968 cites W1963962914 @default.
- W2966669968 cites W2027278235 @default.
- W2966669968 cites W2064772413 @default.
- W2966669968 cites W2087042779 @default.
- W2966669968 cites W2116510698 @default.
- W2966669968 cites W2141463059 @default.
- W2966669968 cites W2142370750 @default.
- W2966669968 cites W2256659156 @default.
- W2966669968 cites W2289492114 @default.
- W2966669968 cites W2313811250 @default.
- W2966669968 cites W2330256370 @default.
- W2966669968 cites W2559085405 @default.
- W2966669968 cites W2612624696 @default.
- W2966669968 cites W2783059813 @default.
- W2966669968 cites W2783420784 @default.
- W2966669968 cites W2889705906 @default.
- W2966669968 cites W2892174844 @default.
- W2966669968 cites W2892553441 @default.
- W2966669968 cites W2912894801 @default.
- W2966669968 cites W2946147945 @default.
- W2966669968 cites W888848858 @default.
- W2966669968 hasPublicationYear "2019" @default.
- W2966669968 type Work @default.
- W2966669968 sameAs 2966669968 @default.
- W2966669968 citedByCount "0" @default.
- W2966669968 crossrefType "posted-content" @default.
- W2966669968 hasAuthorship W2966669968A5000889718 @default.
- W2966669968 hasAuthorship W2966669968A5080667829 @default.
- W2966669968 hasAuthorship W2966669968A5083638676 @default.
- W2966669968 hasAuthorship W2966669968A5091783140 @default.
- W2966669968 hasConcept C146849305 @default.
- W2966669968 hasConcept C154945302 @default.
- W2966669968 hasConcept C31972630 @default.
- W2966669968 hasConcept C41008148 @default.
- W2966669968 hasConcept C52102323 @default.
- W2966669968 hasConcept C71924100 @default.
- W2966669968 hasConcept C79061980 @default.
- W2966669968 hasConcept C81363708 @default.
- W2966669968 hasConcept C89600930 @default.
- W2966669968 hasConcept C99508421 @default.
- W2966669968 hasConceptScore W2966669968C146849305 @default.
- W2966669968 hasConceptScore W2966669968C154945302 @default.
- W2966669968 hasConceptScore W2966669968C31972630 @default.
- W2966669968 hasConceptScore W2966669968C41008148 @default.
- W2966669968 hasConceptScore W2966669968C52102323 @default.
- W2966669968 hasConceptScore W2966669968C71924100 @default.
- W2966669968 hasConceptScore W2966669968C79061980 @default.
- W2966669968 hasConceptScore W2966669968C81363708 @default.
- W2966669968 hasConceptScore W2966669968C89600930 @default.
- W2966669968 hasConceptScore W2966669968C99508421 @default.
- W2966669968 hasLocation W29666699681 @default.
- W2966669968 hasOpenAccess W2966669968 @default.
- W2966669968 hasPrimaryLocation W29666699681 @default.
- W2966669968 hasRelatedWork W2025097801 @default.
- W2966669968 hasRelatedWork W2093163939 @default.
- W2966669968 hasRelatedWork W2127420239 @default.
- W2966669968 hasRelatedWork W2241657233 @default.
- W2966669968 hasRelatedWork W2508884355 @default.
- W2966669968 hasRelatedWork W2532401832 @default.
- W2966669968 hasRelatedWork W2922032179 @default.
- W2966669968 hasRelatedWork W2968470052 @default.
- W2966669968 hasRelatedWork W2979885120 @default.
- W2966669968 hasRelatedWork W2983490353 @default.
- W2966669968 hasRelatedWork W2989817951 @default.
- W2966669968 hasRelatedWork W3110728682 @default.
- W2966669968 hasRelatedWork W3153516697 @default.
- W2966669968 hasRelatedWork W3172593863 @default.
- W2966669968 hasRelatedWork W3189869657 @default.
- W2966669968 hasRelatedWork W3194613668 @default.
- W2966669968 hasRelatedWork W3195327871 @default.
- W2966669968 hasRelatedWork W3199234813 @default.
- W2966669968 hasRelatedWork W387150 @default.
- W2966669968 hasRelatedWork W2932916262 @default.
- W2966669968 isParatext "false" @default.
- W2966669968 isRetracted "false" @default.
- W2966669968 magId "2966669968" @default.
- W2966669968 workType "article" @default.