Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966702489> ?p ?o ?g. }
- W2966702489 endingPage "539" @default.
- W2966702489 startingPage "520" @default.
- W2966702489 abstract "Computing the smallest number q such that the vertices of a given graph can be properly q-colored, known as the chromatic number, is one of the oldest and most fundamental problems in combinatorial optimization. The q-Coloring problem has been studied intensively using the framework of parameterized algorithmics, resulting in a very good understanding of the best-possible algorithms for several parameterizations based on the structure of the graph. For example, algorithms are known to solve the problem on graphs of treewidth tw in time O⁎(qtw), while a running time of O⁎((q−ε)tw) is impossible assuming the Strong Exponential Time Hypothesis (SETH). While there is an abundance of work for parameterizations based on decompositions of the graph by vertex separators, almost nothing is known about parameterizations based on edge separators. We fill this gap by studying q-Coloring parameterized by cutwidth, and parameterized by pathwidth in bounded-degree graphs. Our research uncovers interesting new ways to exploit small edge separators. We present two algorithms for q-Coloring parameterized by cutwidth ctw: a deterministic one that runs in time O⁎(2ω⋅ctw), where ω is the square matrix multiplication exponent, and a randomized one with runtime O⁎(2ctw). In sharp contrast to earlier work, the running time is independent of q. The dependence on cutwidth is optimal: we prove that even 3-Coloring cannot be solved in O⁎((2−ε)ctw) time assuming SETH. Our algorithms rely on a new rank bound for a matrix that describes compatible colorings. Combined with a simple communication protocol for evaluating a product of two polynomials, this also yields an O⁎((⌊d/2⌋+1)pw) time randomized algorithm for q-Coloring on graphs of pathwidth pw and maximum degree d. Such a runtime was first obtained by Björklund, but only for graphs with few proper colorings. We also prove that this result is optimal in the sense that no O⁎((⌊d/2⌋+1−ε)pw)-time algorithm exists assuming SETH." @default.
- W2966702489 created "2019-08-13" @default.
- W2966702489 creator A5048942396 @default.
- W2966702489 creator A5068357631 @default.
- W2966702489 date "2019-11-01" @default.
- W2966702489 modified "2023-10-17" @default.
- W2966702489 title "Computing the chromatic number using graph decompositions via matrix rank" @default.
- W2966702489 cites W1779781738 @default.
- W2966702489 cites W1984198677 @default.
- W2966702489 cites W1985572324 @default.
- W2966702489 cites W1988564791 @default.
- W2966702489 cites W1995725694 @default.
- W2966702489 cites W2011538048 @default.
- W2966702489 cites W2015469394 @default.
- W2966702489 cites W2021180976 @default.
- W2966702489 cites W2030087828 @default.
- W2966702489 cites W2065528988 @default.
- W2966702489 cites W2067264828 @default.
- W2966702489 cites W2070790034 @default.
- W2966702489 cites W2072414205 @default.
- W2966702489 cites W2074359677 @default.
- W2966702489 cites W2076322499 @default.
- W2966702489 cites W2079966248 @default.
- W2966702489 cites W2083103669 @default.
- W2966702489 cites W2087083200 @default.
- W2966702489 cites W2089158353 @default.
- W2966702489 cites W2137012936 @default.
- W2966702489 cites W2144231036 @default.
- W2966702489 cites W2610479830 @default.
- W2966702489 cites W2794350243 @default.
- W2966702489 cites W2800485060 @default.
- W2966702489 cites W3139078859 @default.
- W2966702489 cites W4238913085 @default.
- W2966702489 cites W2067500596 @default.
- W2966702489 doi "https://doi.org/10.1016/j.tcs.2019.08.006" @default.
- W2966702489 hasPublicationYear "2019" @default.
- W2966702489 type Work @default.
- W2966702489 sameAs 2966702489 @default.
- W2966702489 citedByCount "6" @default.
- W2966702489 countsByYear W29667024892020 @default.
- W2966702489 countsByYear W29667024892021 @default.
- W2966702489 countsByYear W29667024892023 @default.
- W2966702489 crossrefType "journal-article" @default.
- W2966702489 hasAuthorship W2966702489A5048942396 @default.
- W2966702489 hasAuthorship W2966702489A5068357631 @default.
- W2966702489 hasBestOaLocation W29667024892 @default.
- W2966702489 hasConcept C114614502 @default.
- W2966702489 hasConcept C118615104 @default.
- W2966702489 hasConcept C123809776 @default.
- W2966702489 hasConcept C132525143 @default.
- W2966702489 hasConcept C132569581 @default.
- W2966702489 hasConcept C134306372 @default.
- W2966702489 hasConcept C149530733 @default.
- W2966702489 hasConcept C158319403 @default.
- W2966702489 hasConcept C165464430 @default.
- W2966702489 hasConcept C196956537 @default.
- W2966702489 hasConcept C203776342 @default.
- W2966702489 hasConcept C33923547 @default.
- W2966702489 hasConcept C34388435 @default.
- W2966702489 hasConcept C43517604 @default.
- W2966702489 hasConcept C76946457 @default.
- W2966702489 hasConcept C77553402 @default.
- W2966702489 hasConceptScore W2966702489C114614502 @default.
- W2966702489 hasConceptScore W2966702489C118615104 @default.
- W2966702489 hasConceptScore W2966702489C123809776 @default.
- W2966702489 hasConceptScore W2966702489C132525143 @default.
- W2966702489 hasConceptScore W2966702489C132569581 @default.
- W2966702489 hasConceptScore W2966702489C134306372 @default.
- W2966702489 hasConceptScore W2966702489C149530733 @default.
- W2966702489 hasConceptScore W2966702489C158319403 @default.
- W2966702489 hasConceptScore W2966702489C165464430 @default.
- W2966702489 hasConceptScore W2966702489C196956537 @default.
- W2966702489 hasConceptScore W2966702489C203776342 @default.
- W2966702489 hasConceptScore W2966702489C33923547 @default.
- W2966702489 hasConceptScore W2966702489C34388435 @default.
- W2966702489 hasConceptScore W2966702489C43517604 @default.
- W2966702489 hasConceptScore W2966702489C76946457 @default.
- W2966702489 hasConceptScore W2966702489C77553402 @default.
- W2966702489 hasFunder F4320321800 @default.
- W2966702489 hasLocation W29667024891 @default.
- W2966702489 hasLocation W296670248910 @default.
- W2966702489 hasLocation W29667024892 @default.
- W2966702489 hasLocation W29667024893 @default.
- W2966702489 hasLocation W29667024894 @default.
- W2966702489 hasLocation W29667024895 @default.
- W2966702489 hasLocation W29667024896 @default.
- W2966702489 hasLocation W29667024897 @default.
- W2966702489 hasLocation W29667024898 @default.
- W2966702489 hasLocation W29667024899 @default.
- W2966702489 hasOpenAccess W2966702489 @default.
- W2966702489 hasPrimaryLocation W29667024891 @default.
- W2966702489 hasRelatedWork W1796637954 @default.
- W2966702489 hasRelatedWork W1995561296 @default.
- W2966702489 hasRelatedWork W2950380069 @default.
- W2966702489 hasRelatedWork W3009300612 @default.
- W2966702489 hasRelatedWork W3028771558 @default.
- W2966702489 hasRelatedWork W3080346353 @default.
- W2966702489 hasRelatedWork W3194359700 @default.